Positive rudimentarity of the graphs of the Ackermann's and Grzegorczyk's functions
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 186-191

Voir la notice de l'article provenant de la source Math-Net.Ru

The graphs of the Ackermann's functions $\lambda xyg_n(x,y)$ [3,4] and the Grzegorczyk's functions $f_n$ [2] are shown to be in the class of the positive rudimentary predicates of J. H. Bennett [1]. The latter class is included in the initial class $\mathscr E_*^0$ A. Grzegorczyk [2], thus our result strengthens that of S. V. Pakhomov [5] about the expressibility of the $f_n$'s graphs in $\mathscr E_*^0$. By a generalization of the method applied, the positive rudimentarity of the graph of the Ackerman's function $\lambda nxyg_n(x,y)$ can be proved.
@article{ZNSL_1979_88_a13,
     author = {A. V. Proskurin},
     title = {Positive rudimentarity of the graphs of the {Ackermann's} and {Grzegorczyk's} functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {186--191},
     publisher = {mathdoc},
     volume = {88},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a13/}
}
TY  - JOUR
AU  - A. V. Proskurin
TI  - Positive rudimentarity of the graphs of the Ackermann's and Grzegorczyk's functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 186
EP  - 191
VL  - 88
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a13/
LA  - ru
ID  - ZNSL_1979_88_a13
ER  - 
%0 Journal Article
%A A. V. Proskurin
%T Positive rudimentarity of the graphs of the Ackermann's and Grzegorczyk's functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 186-191
%V 88
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a13/
%G ru
%F ZNSL_1979_88_a13
A. V. Proskurin. Positive rudimentarity of the graphs of the Ackermann's and Grzegorczyk's functions. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 186-191. http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a13/