Three ways of recognizing essential formulas in sequents
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 163-175
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be a formula, $\Gamma\to\Delta$ be a sequent. The formula $A$ is unessential in $A,\Gamma\to\Delta$ if derivability of $A,\Gamma\to\Delta$ implies derivability of $\Gamma\to\Delta$. The paper describes 3 sufficient conditions for a formula to be unessential in classical and intuitionistic predicate calculus. The conditions are applied for proving hereditary unsolvability of these theories:
1) the intuitionistic equality theory with the axiom $\rceil\rceil\forall xy(x=y)$, the scheme
\begin{equation}
\forall_\alpha\rceil\rceil A\supset\rceil\rceil\forall_\alpha A
\end{equation}
and the scheme
\begin{equation}
\rceil A\vee\rceil\rceil A;
\end{equation} 2) the intuitionistic monadic predicate calculus with one predicate letter with the axiom the scheme (1) and the scheme (2).
@article{ZNSL_1979_88_a11,
author = {V. P. Orevkov},
title = {Three ways of recognizing essential formulas in sequents},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {163--175},
publisher = {mathdoc},
volume = {88},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a11/}
}
V. P. Orevkov. Three ways of recognizing essential formulas in sequents. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 163-175. http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a11/