A~coherence theorem for canonical morphisms in cartesian closed categories
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 3-29

Voir la notice de l'article provenant de la source Math-Net.Ru

A coherence theorem states that any diagram of canonical maps from $A$ to $B$ is commutative, i.e. any two maps from $A$ to $B$ are equal if objects $A,B$ satisfy some natural condition. We employ familiar translation ([2], [6]) of the canonical maps in cartesian closed category into derivations in ($\,\supset$)-fragment of intuitionistic propositional calculus. Two maps are equal iff corresponding derivations are equivalent (i.e. they have the same normal form or their deductive terms are equivalent ([2], [5]). We consider the following form of coherence theorem. If $S$ is a sequent and any propositional variable occurs no more than twice in $S$ then any two derivations of $S$ are equivalent. (It makes no difference to consider cut-free $L$-deductions or normal natural deductions (cf.[9]).) We give two proofs of the coherence theorem. The first proof (due to A. Babajev) uses the natural deduction system and deductive terms. The second proof (due to S. Solovaov) uses a reduction of the formula depth [7] and Kleene's results on permutability of inferences in Gentzen's calculi LK and LJ.
@article{ZNSL_1979_88_a0,
     author = {A. A. Babaev and S. V. Solov'ev},
     title = {A~coherence theorem for canonical morphisms in cartesian closed categories},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {3--29},
     publisher = {mathdoc},
     volume = {88},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a0/}
}
TY  - JOUR
AU  - A. A. Babaev
AU  - S. V. Solov'ev
TI  - A~coherence theorem for canonical morphisms in cartesian closed categories
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 3
EP  - 29
VL  - 88
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a0/
LA  - ru
ID  - ZNSL_1979_88_a0
ER  - 
%0 Journal Article
%A A. A. Babaev
%A S. V. Solov'ev
%T A~coherence theorem for canonical morphisms in cartesian closed categories
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 3-29
%V 88
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a0/
%G ru
%F ZNSL_1979_88_a0
A. A. Babaev; S. V. Solov'ev. A~coherence theorem for canonical morphisms in cartesian closed categories. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 3-29. http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a0/