The problem of stability for J.~Marcinkiewicz's theorem
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 3, Tome 87 (1979), pp. 104-124
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we investigate stability of the well known theorem due to J. Marciniciewicz asserting that
$\exp P(t)$ where $P(t)$ is a polynomial can be a characteristic function only when the degree of $P(t)$ is $\leq2$. Our main result is given by the following theorem.
Theorem. {\it Let
$|\exp P_{2n}(t)-\varphi(t)|\leq\varepsilon,\quad t\in[-T,T]$, where
$$
P_{2n}(t)=-\frac12t^2+\sum_{k=2}^n a_{2k}t^{2k},
\quad a_{2k}\in R^1,\quad|a_{2k}|\leq H,\quad k=2,3,\dots,n,\quad a_{2n}0
$$
$\varphi(t)=\varphi(-t)$ – even characteristic function. Then
$$
-a_{2n}\leq\frac{k_1\cdot H^{1-1/n}}{(\log1/\varepsilon_2)^{1-1/n}}+
\frac{k_2\cdot H^{1+1/n}}{(\log1/\varepsilon_2)^{1/n}},
$$
if $\varepsilon_2=k[\varepsilon(\log T+1)+T^{-1}(\log T)^{1/2n}]$ is sufficient small; $K$ is an absolute constant, $K_1$ and $K_2$ depend on $n$ only.}
@article{ZNSL_1979_87_a9,
author = {N. A. Sapogov},
title = {The problem of stability for {J.~Marcinkiewicz's} theorem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {104--124},
publisher = {mathdoc},
volume = {87},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_87_a9/}
}
N. A. Sapogov. The problem of stability for J.~Marcinkiewicz's theorem. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 3, Tome 87 (1979), pp. 104-124. http://geodesic.mathdoc.fr/item/ZNSL_1979_87_a9/