The estimates of stability of the characterization of the normal distribution given by G.~Polya theorem
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 3, Tome 87 (1979), pp. 196-205

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1$, $EX_1=0$ and $X_2$ be independent identically distributed random variables and let $$ \sup_x|P(X_1)-P(aX_1+bX_2)|\leq\varepsilon, $$ where $a>0$, $b>0$, $a^2+b^2=1$. Suppose that for some integer $r\geq3p$, $P=(1/2\ln(1/2))/\ln(\max(a,b))$, $$ \mathsf{E}|X_1|^r\leq M_r\infty;\quad\mathsf{E}X_i^s=\mathsf{E}N_{0,\sigma}^s,\quad s=1,2,\dots,r-1, $$ where $N_{0,\sigma}$ – normal random variable with parameters $(0,\sigma)$. Then exist such constants $c=c(b,M_r)$ and $\varepsilon_0=\varepsilon_0(b,M_r,\sigma)$ that $$ \sup_x|P(X_1)-\frac1{\sigma\sqrt{2\pi}}\int_{-\infty}^x e^{-y^2/2\sigma^2}\, dy|\leq c(\sigma^{-2p}+\sigma^{r-2p})\varepsilon^{1-2p/r}. $$
@article{ZNSL_1979_87_a15,
     author = {R. V. Yanushkevichius},
     title = {The estimates of stability of the characterization of the normal distribution given by {G.~Polya} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {196--205},
     publisher = {mathdoc},
     volume = {87},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_87_a15/}
}
TY  - JOUR
AU  - R. V. Yanushkevichius
TI  - The estimates of stability of the characterization of the normal distribution given by G.~Polya theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 196
EP  - 205
VL  - 87
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_87_a15/
LA  - ru
ID  - ZNSL_1979_87_a15
ER  - 
%0 Journal Article
%A R. V. Yanushkevichius
%T The estimates of stability of the characterization of the normal distribution given by G.~Polya theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 196-205
%V 87
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_87_a15/
%G ru
%F ZNSL_1979_87_a15
R. V. Yanushkevichius. The estimates of stability of the characterization of the normal distribution given by G.~Polya theorem. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 3, Tome 87 (1979), pp. 196-205. http://geodesic.mathdoc.fr/item/ZNSL_1979_87_a15/