The estimates of stability of the characterization of the normal distribution given by G.~Polya theorem
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 3, Tome 87 (1979), pp. 196-205
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X_1$, $EX_1=0$ and $X_2$ be independent identically distributed random variables and let
$$
\sup_x|P(X_1)-P(aX_1+bX_2)|\leq\varepsilon,
$$
where $a>0$, $b>0$, $a^2+b^2=1$. Suppose that for some integer $r\geq3p$,
$P=(1/2\ln(1/2))/\ln(\max(a,b))$,
$$
\mathsf{E}|X_1|^r\leq M_r\infty;\quad\mathsf{E}X_i^s=\mathsf{E}N_{0,\sigma}^s,\quad s=1,2,\dots,r-1,
$$
where $N_{0,\sigma}$ – normal random variable with parameters $(0,\sigma)$.
Then exist such constants $c=c(b,M_r)$ and $\varepsilon_0=\varepsilon_0(b,M_r,\sigma)$ that
$$
\sup_x|P(X_1)-\frac1{\sigma\sqrt{2\pi}}\int_{-\infty}^x e^{-y^2/2\sigma^2}\,
dy|\leq c(\sigma^{-2p}+\sigma^{r-2p})\varepsilon^{1-2p/r}.
$$
@article{ZNSL_1979_87_a15,
author = {R. V. Yanushkevichius},
title = {The estimates of stability of the characterization of the normal distribution given by {G.~Polya} theorem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {196--205},
publisher = {mathdoc},
volume = {87},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_87_a15/}
}
TY - JOUR AU - R. V. Yanushkevichius TI - The estimates of stability of the characterization of the normal distribution given by G.~Polya theorem JO - Zapiski Nauchnykh Seminarov POMI PY - 1979 SP - 196 EP - 205 VL - 87 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1979_87_a15/ LA - ru ID - ZNSL_1979_87_a15 ER -
%0 Journal Article %A R. V. Yanushkevichius %T The estimates of stability of the characterization of the normal distribution given by G.~Polya theorem %J Zapiski Nauchnykh Seminarov POMI %D 1979 %P 196-205 %V 87 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1979_87_a15/ %G ru %F ZNSL_1979_87_a15
R. V. Yanushkevichius. The estimates of stability of the characterization of the normal distribution given by G.~Polya theorem. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 3, Tome 87 (1979), pp. 196-205. http://geodesic.mathdoc.fr/item/ZNSL_1979_87_a15/