The estimates of stability of the characterization of the normal distribution given by G. Polya theorem
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 3, Tome 87 (1979), pp. 196-205
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X_1$, $EX_1=0$ and $X_2$ be independent identically distributed random variables and let $$ \sup_x|P(X_1<x)-P(aX_1+bX_2<x)|\leq\varepsilon, $$ where $a>0$, $b>0$, $a^2+b^2=1$. Suppose that for some integer $r\geq3p$, $P=(1/2\ln(1/2))/\ln(\max(a,b))$, $$ \mathsf{E}|X_1|^r\leq M_r<\infty;\quad\mathsf{E}X_i^s=\mathsf{E}N_{0,\sigma}^s,\quad s=1,2,\dots,r-1, $$ where $N_{0,\sigma}$ – normal random variable with parameters $(0,\sigma)$. Then exist such constants $c=c(b,M_r)$ and $\varepsilon_0=\varepsilon_0(b,M_r,\sigma)$ that $$ \sup_x|P(X_1<x)-\frac1{\sigma\sqrt{2\pi}}\int_{-\infty}^x e^{-y^2/2\sigma^2}\, dy|\leq c(\sigma^{-2p}+\sigma^{r-2p})\varepsilon^{1-2p/r}. $$
@article{ZNSL_1979_87_a15,
author = {R. V. Yanushkevichius},
title = {The estimates of stability of the characterization of the normal distribution given by {G.~Polya} theorem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {196--205},
year = {1979},
volume = {87},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_87_a15/}
}
TY - JOUR AU - R. V. Yanushkevichius TI - The estimates of stability of the characterization of the normal distribution given by G. Polya theorem JO - Zapiski Nauchnykh Seminarov POMI PY - 1979 SP - 196 EP - 205 VL - 87 UR - http://geodesic.mathdoc.fr/item/ZNSL_1979_87_a15/ LA - ru ID - ZNSL_1979_87_a15 ER -
R. V. Yanushkevichius. The estimates of stability of the characterization of the normal distribution given by G. Polya theorem. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 3, Tome 87 (1979), pp. 196-205. http://geodesic.mathdoc.fr/item/ZNSL_1979_87_a15/