The estimates of stability of the characterization of the normal distribution given by G. Polya theorem
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 3, Tome 87 (1979), pp. 196-205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $X_1$, $EX_1=0$ and $X_2$ be independent identically distributed random variables and let $$ \sup_x|P(X_1<x)-P(aX_1+bX_2<x)|\leq\varepsilon, $$ where $a>0$, $b>0$, $a^2+b^2=1$. Suppose that for some integer $r\geq3p$, $P=(1/2\ln(1/2))/\ln(\max(a,b))$, $$ \mathsf{E}|X_1|^r\leq M_r<\infty;\quad\mathsf{E}X_i^s=\mathsf{E}N_{0,\sigma}^s,\quad s=1,2,\dots,r-1, $$ where $N_{0,\sigma}$ – normal random variable with parameters $(0,\sigma)$. Then exist such constants $c=c(b,M_r)$ and $\varepsilon_0=\varepsilon_0(b,M_r,\sigma)$ that $$ \sup_x|P(X_1<x)-\frac1{\sigma\sqrt{2\pi}}\int_{-\infty}^x e^{-y^2/2\sigma^2}\, dy|\leq c(\sigma^{-2p}+\sigma^{r-2p})\varepsilon^{1-2p/r}. $$
@article{ZNSL_1979_87_a15,
     author = {R. V. Yanushkevichius},
     title = {The estimates of stability of the characterization of the normal distribution given by {G.~Polya} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {196--205},
     year = {1979},
     volume = {87},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_87_a15/}
}
TY  - JOUR
AU  - R. V. Yanushkevichius
TI  - The estimates of stability of the characterization of the normal distribution given by G. Polya theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 196
EP  - 205
VL  - 87
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_87_a15/
LA  - ru
ID  - ZNSL_1979_87_a15
ER  - 
%0 Journal Article
%A R. V. Yanushkevichius
%T The estimates of stability of the characterization of the normal distribution given by G. Polya theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 196-205
%V 87
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_87_a15/
%G ru
%F ZNSL_1979_87_a15
R. V. Yanushkevichius. The estimates of stability of the characterization of the normal distribution given by G. Polya theorem. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part 3, Tome 87 (1979), pp. 196-205. http://geodesic.mathdoc.fr/item/ZNSL_1979_87_a15/