Relation between rank and multiplicative complexity of a bilinear form over a commutative Noetherian ring
Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 66-81
Voir la notice de l'article provenant de la source Math-Net.Ru
The concept of multiplicative complexity of a bilinear form is introduced for a commutative Noetherian ring. Rings are described for which the multiplicative complexity coincides with the rank for all forms. It is shown that for regular rings of dimension $\geqslant3$ the multiplicative complexity can exceed the rank by an arbitrarily large number.
@article{ZNSL_1979_86_a7,
author = {D. Yu. Grigor'ev},
title = {Relation between rank and multiplicative complexity of a bilinear form over a commutative {Noetherian} ring},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {66--81},
publisher = {mathdoc},
volume = {86},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a7/}
}
TY - JOUR AU - D. Yu. Grigor'ev TI - Relation between rank and multiplicative complexity of a bilinear form over a commutative Noetherian ring JO - Zapiski Nauchnykh Seminarov POMI PY - 1979 SP - 66 EP - 81 VL - 86 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a7/ LA - ru ID - ZNSL_1979_86_a7 ER -
D. Yu. Grigor'ev. Relation between rank and multiplicative complexity of a bilinear form over a commutative Noetherian ring. Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 66-81. http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a7/