Problems in $R$-equivalence of semisimple groups
Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 49-65

Voir la notice de l'article provenant de la source Math-Net.Ru

$R$-equivalence on the unimodular group of a simple algebra is studied in detail. A rather complete characterization is obtained for the $R$-equivalence group of semisimple groups over the field of $\rho$-adic numbers. In this case all the Manin groups are commutative, and for simply connected groups, they are trivial. It is shown how $R$-equivalence can be applied to the weak approximation problem.
@article{ZNSL_1979_86_a6,
     author = {V. E. Voskresenskii},
     title = {Problems in $R$-equivalence of semisimple groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--65},
     publisher = {mathdoc},
     volume = {86},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a6/}
}
TY  - JOUR
AU  - V. E. Voskresenskii
TI  - Problems in $R$-equivalence of semisimple groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 49
EP  - 65
VL  - 86
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a6/
LA  - ru
ID  - ZNSL_1979_86_a6
ER  - 
%0 Journal Article
%A V. E. Voskresenskii
%T Problems in $R$-equivalence of semisimple groups
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 49-65
%V 86
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a6/
%G ru
%F ZNSL_1979_86_a6
V. E. Voskresenskii. Problems in $R$-equivalence of semisimple groups. Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 49-65. http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a6/