Self-normalizing nilpotent subgroups of the full linear group over a~finite field
Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 34-39

Voir la notice de l'article provenant de la source Math-Net.Ru

It has been proved (Ref. Zh. Mat., 1977, 4A170) that in the full linear group $GL(n,q)$, $n=2,3$, over a finite field of $q$ elements, $q$ odd or $q=2$, the only self-normalizing nilpotent subgroups are the normalizers of Sylow 2-subgroups and that for even $q>2$ there are no such subgroups. In the present note it is deduced from results of D. A. Suprunenko and R. F. Apatenok (Ref. Zh. Mat., 1960, 13586; 1962, 9A150) that this is true for any $n$.
@article{ZNSL_1979_86_a4,
     author = {N. A. Vavilov},
     title = {Self-normalizing nilpotent subgroups of the full linear group over a~finite field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--39},
     publisher = {mathdoc},
     volume = {86},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a4/}
}
TY  - JOUR
AU  - N. A. Vavilov
TI  - Self-normalizing nilpotent subgroups of the full linear group over a~finite field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 34
EP  - 39
VL  - 86
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a4/
LA  - ru
ID  - ZNSL_1979_86_a4
ER  - 
%0 Journal Article
%A N. A. Vavilov
%T Self-normalizing nilpotent subgroups of the full linear group over a~finite field
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 34-39
%V 86
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a4/
%G ru
%F ZNSL_1979_86_a4
N. A. Vavilov. Self-normalizing nilpotent subgroups of the full linear group over a~finite field. Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 34-39. http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a4/