Schur multiplier of a group of elementary matrices of finite order
Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 162-169

Voir la notice de l'article provenant de la source Math-Net.Ru

If a ring $\Lambda$ is finitely generated as a module over its center, then for the Schur multiplier coincides with. For a representation of is obtained which is analogous to van der Kallen's representation for a commutative ring
@article{ZNSL_1979_86_a14,
     author = {M. S. Tulenbaev},
     title = {Schur multiplier of a group of elementary matrices of finite order},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--169},
     publisher = {mathdoc},
     volume = {86},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a14/}
}
TY  - JOUR
AU  - M. S. Tulenbaev
TI  - Schur multiplier of a group of elementary matrices of finite order
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 162
EP  - 169
VL  - 86
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a14/
LA  - ru
ID  - ZNSL_1979_86_a14
ER  - 
%0 Journal Article
%A M. S. Tulenbaev
%T Schur multiplier of a group of elementary matrices of finite order
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 162-169
%V 86
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a14/
%G ru
%F ZNSL_1979_86_a14
M. S. Tulenbaev. Schur multiplier of a group of elementary matrices of finite order. Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 162-169. http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a14/