Finite galois modules
Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 125-134

Voir la notice de l'article provenant de la source Math-Net.Ru

A single general formula is given for the weak approximation in algebraic tori over global fields. We calculate the first cohomology group for the torus of an embedding problem of fields with Abelian kernel, the coefficients being the Picard group of a nonsingular projective model of the torus. The Tamagawa numbers of a certain class of reductive groups are calculated.
@article{ZNSL_1979_86_a11,
     author = {A. F. Kryuchkov},
     title = {Finite galois modules},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {125--134},
     publisher = {mathdoc},
     volume = {86},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a11/}
}
TY  - JOUR
AU  - A. F. Kryuchkov
TI  - Finite galois modules
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 125
EP  - 134
VL  - 86
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a11/
LA  - ru
ID  - ZNSL_1979_86_a11
ER  - 
%0 Journal Article
%A A. F. Kryuchkov
%T Finite galois modules
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 125-134
%V 86
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a11/
%G ru
%F ZNSL_1979_86_a11
A. F. Kryuchkov. Finite galois modules. Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 125-134. http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a11/