Number of labeled topologies on ten points
Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 5-10
Voir la notice de l'article provenant de la source Math-Net.Ru
The number of all the topologies that can be introduced on a fixed set of ten points is found. It is equal to 8,977,053,873,043. Out of these, 6,611,065,248,783 topologies satisfy the separation axiom $T_0$.
@article{ZNSL_1979_86_a0,
author = {Z. I. Borevich and V. V. Bumagin and V. I. Rodionov},
title = {Number of labeled topologies on ten points},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--10},
publisher = {mathdoc},
volume = {86},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a0/}
}
Z. I. Borevich; V. V. Bumagin; V. I. Rodionov. Number of labeled topologies on ten points. Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 5-10. http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a0/