Number of labeled topologies on ten points
Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 5-10

Voir la notice de l'article provenant de la source Math-Net.Ru

The number of all the topologies that can be introduced on a fixed set of ten points is found. It is equal to 8,977,053,873,043. Out of these, 6,611,065,248,783 topologies satisfy the separation axiom $T_0$.
@article{ZNSL_1979_86_a0,
     author = {Z. I. Borevich and V. V. Bumagin and V. I. Rodionov},
     title = {Number of labeled topologies on ten points},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--10},
     publisher = {mathdoc},
     volume = {86},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a0/}
}
TY  - JOUR
AU  - Z. I. Borevich
AU  - V. V. Bumagin
AU  - V. I. Rodionov
TI  - Number of labeled topologies on ten points
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 5
EP  - 10
VL  - 86
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a0/
LA  - ru
ID  - ZNSL_1979_86_a0
ER  - 
%0 Journal Article
%A Z. I. Borevich
%A V. V. Bumagin
%A V. I. Rodionov
%T Number of labeled topologies on ten points
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 5-10
%V 86
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a0/
%G ru
%F ZNSL_1979_86_a0
Z. I. Borevich; V. V. Bumagin; V. I. Rodionov. Number of labeled topologies on ten points. Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 5-10. http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a0/