A~generalization of Marcinkiewich's theorem on integer characteristic functions of probability distributions
Zapiski Nauchnykh Seminarov POMI, Investigations in the theory of probability distributions. Part IV, Tome 85 (1979), pp. 94-103
Voir la notice de l'article provenant de la source Math-Net.Ru
The result of the paper is the following one: Let the function $\varphi(z)$ be analitic and of finite order $\rho>0$ in the upper half-plane. Suppose the function $\varphi(z)$ has no zeros and satisfies the following condition: $|\varphi(z)|\leq\varphi(i\operatorname{Im}z)$. Than $\rho\leq3$.
@article{ZNSL_1979_85_a6,
author = {I. P. Kamynin},
title = {A~generalization of {Marcinkiewich's} theorem on integer characteristic functions of probability distributions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {94--103},
publisher = {mathdoc},
volume = {85},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a6/}
}
TY - JOUR AU - I. P. Kamynin TI - A~generalization of Marcinkiewich's theorem on integer characteristic functions of probability distributions JO - Zapiski Nauchnykh Seminarov POMI PY - 1979 SP - 94 EP - 103 VL - 85 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a6/ LA - ru ID - ZNSL_1979_85_a6 ER -
I. P. Kamynin. A~generalization of Marcinkiewich's theorem on integer characteristic functions of probability distributions. Zapiski Nauchnykh Seminarov POMI, Investigations in the theory of probability distributions. Part IV, Tome 85 (1979), pp. 94-103. http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a6/