A~generalization of Marcinkiewich's theorem on integer characteristic functions of probability distributions
Zapiski Nauchnykh Seminarov POMI, Investigations in the theory of probability distributions. Part IV, Tome 85 (1979), pp. 94-103

Voir la notice de l'article provenant de la source Math-Net.Ru

The result of the paper is the following one: Let the function $\varphi(z)$ be analitic and of finite order $\rho>0$ in the upper half-plane. Suppose the function $\varphi(z)$ has no zeros and satisfies the following condition: $|\varphi(z)|\leq\varphi(i\operatorname{Im}z)$. Than $\rho\leq3$.
@article{ZNSL_1979_85_a6,
     author = {I. P. Kamynin},
     title = {A~generalization of {Marcinkiewich's} theorem on integer characteristic functions of probability distributions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {94--103},
     publisher = {mathdoc},
     volume = {85},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a6/}
}
TY  - JOUR
AU  - I. P. Kamynin
TI  - A~generalization of Marcinkiewich's theorem on integer characteristic functions of probability distributions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 94
EP  - 103
VL  - 85
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a6/
LA  - ru
ID  - ZNSL_1979_85_a6
ER  - 
%0 Journal Article
%A I. P. Kamynin
%T A~generalization of Marcinkiewich's theorem on integer characteristic functions of probability distributions
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 94-103
%V 85
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a6/
%G ru
%F ZNSL_1979_85_a6
I. P. Kamynin. A~generalization of Marcinkiewich's theorem on integer characteristic functions of probability distributions. Zapiski Nauchnykh Seminarov POMI, Investigations in the theory of probability distributions. Part IV, Tome 85 (1979), pp. 94-103. http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a6/