On a~hitting probability of Gaussian random vector into a~small ball in a~Hilbert space
Zapiski Nauchnykh Seminarov POMI, Investigations in the theory of probability distributions. Part IV, Tome 85 (1979), pp. 75-93

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi$ be a Gaussian random vector taking its value in a Hilbert space $H$. Denote by $\theta(a,z)$ the ball in $H$ with center $a$ and radius $z$. Let $I(a,z)=\Prob\{\xi\in\theta(a,z)\}$, $z\to0$. We give some asymptotic formulas for $I(a,z)$ valid when $z\to0$.
@article{ZNSL_1979_85_a5,
     author = {I. A. Ibragimov},
     title = {On a~hitting probability of {Gaussian} random vector into a~small ball in {a~Hilbert} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {75--93},
     publisher = {mathdoc},
     volume = {85},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a5/}
}
TY  - JOUR
AU  - I. A. Ibragimov
TI  - On a~hitting probability of Gaussian random vector into a~small ball in a~Hilbert space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 75
EP  - 93
VL  - 85
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a5/
LA  - ru
ID  - ZNSL_1979_85_a5
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%T On a~hitting probability of Gaussian random vector into a~small ball in a~Hilbert space
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 75-93
%V 85
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a5/
%G ru
%F ZNSL_1979_85_a5
I. A. Ibragimov. On a~hitting probability of Gaussian random vector into a~small ball in a~Hilbert space. Zapiski Nauchnykh Seminarov POMI, Investigations in the theory of probability distributions. Part IV, Tome 85 (1979), pp. 75-93. http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a5/