Weak stability of I.~Marcinkievicz's theorem and some inequalities for characteristic functions
Zapiski Nauchnykh Seminarov POMI, Investigations in the theory of probability distributions. Part IV, Tome 85 (1979), pp. 193-196
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate weak stability of the well known theorem due to I. Marcinkiewicz which asserts that $\exp P(t)$ ($P(t)$ is an algebraical polynomial) can be a characteristic function only if the degree of $P(t)$ is not greater than 2. Some other simple inequalities for characteristic functions are also established.
@article{ZNSL_1979_85_a15,
author = {N. A. Sapogov},
title = {Weak stability of {I.~Marcinkievicz's} theorem and some inequalities for characteristic functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {193--196},
publisher = {mathdoc},
volume = {85},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a15/}
}
TY - JOUR AU - N. A. Sapogov TI - Weak stability of I.~Marcinkievicz's theorem and some inequalities for characteristic functions JO - Zapiski Nauchnykh Seminarov POMI PY - 1979 SP - 193 EP - 196 VL - 85 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a15/ LA - ru ID - ZNSL_1979_85_a15 ER -
N. A. Sapogov. Weak stability of I.~Marcinkievicz's theorem and some inequalities for characteristic functions. Zapiski Nauchnykh Seminarov POMI, Investigations in the theory of probability distributions. Part IV, Tome 85 (1979), pp. 193-196. http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a15/