Large deviations and asymptotic efficiency of integral type statistics.~I
Zapiski Nauchnykh Seminarov POMI, Investigations in the theory of probability distributions. Part IV, Tome 85 (1979), pp. 175-187

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain rough asymptotics for probabilities of large deviations of $\omega^2$-type integral statistics and their analogues for Poisson sample size. An approach due to Sanov is used so that this asymptotics depend on a solution of some extremal problem. The latter is solved with the aid of bifurcation theory.
@article{ZNSL_1979_85_a13,
     author = {Ya. Yu. Nikitin},
     title = {Large deviations and asymptotic efficiency of integral type {statistics.~I}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {175--187},
     publisher = {mathdoc},
     volume = {85},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a13/}
}
TY  - JOUR
AU  - Ya. Yu. Nikitin
TI  - Large deviations and asymptotic efficiency of integral type statistics.~I
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 175
EP  - 187
VL  - 85
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a13/
LA  - ru
ID  - ZNSL_1979_85_a13
ER  - 
%0 Journal Article
%A Ya. Yu. Nikitin
%T Large deviations and asymptotic efficiency of integral type statistics.~I
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 175-187
%V 85
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a13/
%G ru
%F ZNSL_1979_85_a13
Ya. Yu. Nikitin. Large deviations and asymptotic efficiency of integral type statistics.~I. Zapiski Nauchnykh Seminarov POMI, Investigations in the theory of probability distributions. Part IV, Tome 85 (1979), pp. 175-187. http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a13/