Large deviations and asymptotic efficiency of integral type statistics. I
Zapiski Nauchnykh Seminarov POMI, Investigations in the theory of probability distributions. Part IV, Tome 85 (1979), pp. 175-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We obtain rough asymptotics for probabilities of large deviations of $\omega^2$-type integral statistics and their analogues for Poisson sample size. An approach due to Sanov is used so that this asymptotics depend on a solution of some extremal problem. The latter is solved with the aid of bifurcation theory.
@article{ZNSL_1979_85_a13,
     author = {Ya. Yu. Nikitin},
     title = {Large deviations and asymptotic efficiency of integral type {statistics.~I}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {175--187},
     year = {1979},
     volume = {85},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a13/}
}
TY  - JOUR
AU  - Ya. Yu. Nikitin
TI  - Large deviations and asymptotic efficiency of integral type statistics. I
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 175
EP  - 187
VL  - 85
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a13/
LA  - ru
ID  - ZNSL_1979_85_a13
ER  - 
%0 Journal Article
%A Ya. Yu. Nikitin
%T Large deviations and asymptotic efficiency of integral type statistics. I
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 175-187
%V 85
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a13/
%G ru
%F ZNSL_1979_85_a13
Ya. Yu. Nikitin. Large deviations and asymptotic efficiency of integral type statistics. I. Zapiski Nauchnykh Seminarov POMI, Investigations in the theory of probability distributions. Part IV, Tome 85 (1979), pp. 175-187. http://geodesic.mathdoc.fr/item/ZNSL_1979_85_a13/