Quasi-classical soliton-type solutions of Hartry equations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 108-113
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Three-dimensional Hartry equations $ih\,\partial{\psi}/\partial{t}=-h^2\Delta\psi+U\psi$, $\Delta U=|\psi|^2$, are discussed. Asymptotic ($h\to0$) solutions $\psi$ of soliton type, localized $\operatorname{mod}0(h^\infty)$ in a compact domain are constructed. The corresponding asymptotics for the potential are obtained. Quantization conditions for the energy of the soliton are found.
			
            
            
            
          
        
      @article{ZNSL_1979_84_a8,
     author = {M. V. Karasev and V. P. Maslov},
     title = {Quasi-classical soliton-type solutions of {Hartry} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {108--113},
     publisher = {mathdoc},
     volume = {84},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a8/}
}
                      
                      
                    M. V. Karasev; V. P. Maslov. Quasi-classical soliton-type solutions of Hartry equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 108-113. http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a8/