Quasi-classical soliton-type solutions of Hartry equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 108-113
Cet article a éte moissonné depuis la source Math-Net.Ru
Three-dimensional Hartry equations $ih\,\partial{\psi}/\partial{t}=-h^2\Delta\psi+U\psi$, $\Delta U=|\psi|^2$, are discussed. Asymptotic ($h\to0$) solutions $\psi$ of soliton type, localized $\operatorname{mod}0(h^\infty)$ in a compact domain are constructed. The corresponding asymptotics for the potential are obtained. Quantization conditions for the energy of the soliton are found.
@article{ZNSL_1979_84_a8,
author = {M. V. Karasev and V. P. Maslov},
title = {Quasi-classical soliton-type solutions of {Hartry} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {108--113},
year = {1979},
volume = {84},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a8/}
}
M. V. Karasev; V. P. Maslov. Quasi-classical soliton-type solutions of Hartry equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 108-113. http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a8/