Resonance fenomena in the nonlinear equation of a~proper semiconductor $h^2\Delta u=\operatorname{sh}u$
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 35-44

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary value problem of Steklov type for the non-linear semiconductor equation is discussed. Assuming the existence of closed stable geodesic on the surface of a semiconductor the asymptotic solutions which are concentrated in the vicinity of the geodesic are constructed. The solutions are obtained in terms of eigenfunctions if the Laplace operator on a Riemannian manifold and multi-soliton solutions of the Sine-Gordon equation. Similar results are obtained for the mixed boundary value problem.
@article{ZNSL_1979_84_a5,
     author = {S. Yu. Dobrokhotov and V. P. Maslov},
     title = {Resonance fenomena in the nonlinear equation of a~proper semiconductor $h^2\Delta u=\operatorname{sh}u$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {35--44},
     publisher = {mathdoc},
     volume = {84},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a5/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - V. P. Maslov
TI  - Resonance fenomena in the nonlinear equation of a~proper semiconductor $h^2\Delta u=\operatorname{sh}u$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 35
EP  - 44
VL  - 84
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a5/
LA  - ru
ID  - ZNSL_1979_84_a5
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A V. P. Maslov
%T Resonance fenomena in the nonlinear equation of a~proper semiconductor $h^2\Delta u=\operatorname{sh}u$
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 35-44
%V 84
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a5/
%G ru
%F ZNSL_1979_84_a5
S. Yu. Dobrokhotov; V. P. Maslov. Resonance fenomena in the nonlinear equation of a~proper semiconductor $h^2\Delta u=\operatorname{sh}u$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 35-44. http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a5/