Resonance fenomena in the nonlinear equation of a proper semiconductor $h^2\Delta u=\operatorname{sh}u$
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 35-44
Cet article a éte moissonné depuis la source Math-Net.Ru
A boundary value problem of Steklov type for the non-linear semiconductor equation is discussed. Assuming the existence of closed stable geodesic on the surface of a semiconductor the asymptotic solutions which are concentrated in the vicinity of the geodesic are constructed. The solutions are obtained in terms of eigenfunctions if the Laplace operator on a Riemannian manifold and multi-soliton solutions of the Sine-Gordon equation. Similar results are obtained for the mixed boundary value problem.
@article{ZNSL_1979_84_a5,
author = {S. Yu. Dobrokhotov and V. P. Maslov},
title = {Resonance fenomena in the nonlinear equation of a~proper semiconductor $h^2\Delta u=\operatorname{sh}u$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {35--44},
year = {1979},
volume = {84},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a5/}
}
TY - JOUR
AU - S. Yu. Dobrokhotov
AU - V. P. Maslov
TI - Resonance fenomena in the nonlinear equation of a proper semiconductor $h^2\Delta u=\operatorname{sh}u$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 1979
SP - 35
EP - 44
VL - 84
UR - http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a5/
LA - ru
ID - ZNSL_1979_84_a5
ER -
S. Yu. Dobrokhotov; V. P. Maslov. Resonance fenomena in the nonlinear equation of a proper semiconductor $h^2\Delta u=\operatorname{sh}u$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 35-44. http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a5/