On a variant of compactness criterian of A. Veil
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 23-25
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $A$ be an operator on $L_2(G)$ ($G$ being a compact Lie group) and $A=A_1A_2$. It is proved that $A$ is compact if $A_1$ and $A_2$ are “partly smooth”. This result can be applied in multiparticle scattering theory.
@article{ZNSL_1979_84_a3,
author = {A. F. Vakulenko},
title = {On a~variant of compactness criterian of {A.~Veil}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {23--25},
year = {1979},
volume = {84},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a3/}
}
A. F. Vakulenko. On a variant of compactness criterian of A. Veil. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 23-25. http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a3/