On a~variant of compactness criterian of A.~Veil
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 23-25

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be an operator on $L_2(G)$ ($G$ being a compact Lie group) and $A=A_1A_2$. It is proved that $A$ is compact if $A_1$ and $A_2$ are “partly smooth”. This result can be applied in multiparticle scattering theory.
@article{ZNSL_1979_84_a3,
     author = {A. F. Vakulenko},
     title = {On a~variant of compactness criterian of {A.~Veil}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {23--25},
     publisher = {mathdoc},
     volume = {84},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a3/}
}
TY  - JOUR
AU  - A. F. Vakulenko
TI  - On a~variant of compactness criterian of A.~Veil
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 23
EP  - 25
VL  - 84
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a3/
LA  - ru
ID  - ZNSL_1979_84_a3
ER  - 
%0 Journal Article
%A A. F. Vakulenko
%T On a~variant of compactness criterian of A.~Veil
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 23-25
%V 84
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a3/
%G ru
%F ZNSL_1979_84_a3
A. F. Vakulenko. On a~variant of compactness criterian of A.~Veil. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 23-25. http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a3/