On a~variant of compactness criterian of A.~Veil
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 23-25
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $A$ be an operator on $L_2(G)$ ($G$ being a compact Lie group) and $A=A_1A_2$. It is proved that $A$ is compact if $A_1$ and $A_2$ are “partly smooth”. This result can be applied in multiparticle scattering theory.
			
            
            
            
          
        
      @article{ZNSL_1979_84_a3,
     author = {A. F. Vakulenko},
     title = {On a~variant of compactness criterian of {A.~Veil}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {23--25},
     publisher = {mathdoc},
     volume = {84},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a3/}
}
                      
                      
                    A. F. Vakulenko. On a~variant of compactness criterian of A.~Veil. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 23-25. http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a3/