Description of the pair potentials for which the scattering in the quantum system of three one-dimensional particles
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 16-22
Voir la notice de l'article provenant de la source Math-Net.Ru
The coordinate asymptotics of a solution of the scatterinq problem in the quantum system of three one-dimensional particles contains besides plane and spherical waves the diffraction waves, which also occur in the two-dimensional problem of diffraction of the plane wave on the semi-infinite screen. The class of potentials is found for which there are no diffraction waves in the asymptotics of the solution. This class is somewhat wider then well-known Bargmann class.
@article{ZNSL_1979_84_a2,
author = {V. S. Buslaev and S. P. Merkur'ev and S. P. Salikov},
title = {Description of the pair potentials for which the scattering in the quantum system of three one-dimensional particles},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {16--22},
publisher = {mathdoc},
volume = {84},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a2/}
}
TY - JOUR AU - V. S. Buslaev AU - S. P. Merkur'ev AU - S. P. Salikov TI - Description of the pair potentials for which the scattering in the quantum system of three one-dimensional particles JO - Zapiski Nauchnykh Seminarov POMI PY - 1979 SP - 16 EP - 22 VL - 84 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a2/ LA - ru ID - ZNSL_1979_84_a2 ER -
%0 Journal Article %A V. S. Buslaev %A S. P. Merkur'ev %A S. P. Salikov %T Description of the pair potentials for which the scattering in the quantum system of three one-dimensional particles %J Zapiski Nauchnykh Seminarov POMI %D 1979 %P 16-22 %V 84 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a2/ %G ru %F ZNSL_1979_84_a2
V. S. Buslaev; S. P. Merkur'ev; S. P. Salikov. Description of the pair potentials for which the scattering in the quantum system of three one-dimensional particles. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 16-22. http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a2/