Some model nonstationary systems in the theory of non-Newtonian fluids.~II
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 185-210
Voir la notice de l'article provenant de la source Math-Net.Ru
For the non-stationary quasi-linear system
\begin{gather*}
\frac{\partial\bar{v}}{\partial{t}}+v_k\frac{\partial{v}}{\partial{x_k}}+\lambda\biggl[\frac{\partial^2{\bar{v}}}{\partial t^2}+v_{kt}\bar{v}_{x_k}+v_k\frac{\partial^2\bar{v}}{\partial t\partial x_k}\biggr]-\nu\Delta\bar{v}-\varkappa\frac{\partial\Delta\bar v}{\partial t}+\biggl(1+\lambda\frac{\partial}{\partial t}\biggr)\operatorname{grad}p=\bar{F},
\\
\operatorname{div}\bar{v}=0
\end{gather*}
the local theorems of existence and uniqueness of generalized solutions with a finite energy integral
$$
\max_{0\leq t\leq T}\int_\Omega(\bar{v}^2_x+\bar{v}^2_t)\,dx
+\iint_{Q_T}\bar{v}^2_{xt}\,dx\,dt+\infty;
$$
are proved. Different variants of regularized systems are constructed, for which the generalized solution
exists “in the large”.
@article{ZNSL_1979_84_a14,
author = {A. P. Oskolkov},
title = {Some model nonstationary systems in the theory of {non-Newtonian} {fluids.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {185--210},
publisher = {mathdoc},
volume = {84},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a14/}
}
A. P. Oskolkov. Some model nonstationary systems in the theory of non-Newtonian fluids.~II. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 185-210. http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a14/