Some model nonstationary systems in the theory of non-Newtonian fluids.~II
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 185-210

Voir la notice de l'article provenant de la source Math-Net.Ru

For the non-stationary quasi-linear system \begin{gather*} \frac{\partial\bar{v}}{\partial{t}}+v_k\frac{\partial{v}}{\partial{x_k}}+\lambda\biggl[\frac{\partial^2{\bar{v}}}{\partial t^2}+v_{kt}\bar{v}_{x_k}+v_k\frac{\partial^2\bar{v}}{\partial t\partial x_k}\biggr]-\nu\Delta\bar{v}-\varkappa\frac{\partial\Delta\bar v}{\partial t}+\biggl(1+\lambda\frac{\partial}{\partial t}\biggr)\operatorname{grad}p=\bar{F}, \\ \operatorname{div}\bar{v}=0 \end{gather*} the local theorems of existence and uniqueness of generalized solutions with a finite energy integral $$ \max_{0\leq t\leq T}\int_\Omega(\bar{v}^2_x+\bar{v}^2_t)\,dx +\iint_{Q_T}\bar{v}^2_{xt}\,dx\,dt+\infty; $$ are proved. Different variants of regularized systems are constructed, for which the generalized solution exists “in the large”.
@article{ZNSL_1979_84_a14,
     author = {A. P. Oskolkov},
     title = {Some model nonstationary systems in the theory of {non-Newtonian} {fluids.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {185--210},
     publisher = {mathdoc},
     volume = {84},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a14/}
}
TY  - JOUR
AU  - A. P. Oskolkov
TI  - Some model nonstationary systems in the theory of non-Newtonian fluids.~II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 185
EP  - 210
VL  - 84
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a14/
LA  - ru
ID  - ZNSL_1979_84_a14
ER  - 
%0 Journal Article
%A A. P. Oskolkov
%T Some model nonstationary systems in the theory of non-Newtonian fluids.~II
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 185-210
%V 84
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a14/
%G ru
%F ZNSL_1979_84_a14
A. P. Oskolkov. Some model nonstationary systems in the theory of non-Newtonian fluids.~II. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 185-210. http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a14/