On limiting regime for modified Navier--Stokes equations in three-dimensional space
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 131-146
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The description of the limit-set $\mathfrak{M}_R$ (when $t\to\infty$) for all solutions of the system
$$
\frac{\partial\vec v}{\partial t}-\nu\Delta\vec{v}+\sum_{k=1}^3
v_k\frac{\partial\vec{v}}{\partial x_k}+\operatorname{grad}{p}
=\vec{f},
\quad\operatorname{div}\vec{v}=0,
$$
where $\nu=\mu_0+\mu_1\int_\Omega\vec{v}^{\,2}_x(x,t)\,dx$, $\mu_i=\operatorname{const}>0$ and $\Omega$ is bounded, which start at $t=0$ from the points of the ball
$K_R=\{\vec{a}(x):\vec{a}(x)\in\overset\circ{J}(\Omega),\|\vec{a}\|_{2,\Omega}\leq{R}\}$ is given. Particullary, it is proved, that the semi-group $V_t$, $t\geq0$, corresponding to this problem, may be extended 
to the group $V_t$, $t\in\mathbb R^1$, which has some interesting properties.
			
            
            
            
          
        
      @article{ZNSL_1979_84_a11,
     author = {O. A. Ladyzhenskaya},
     title = {On limiting regime for modified {Navier--Stokes} equations in three-dimensional space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {131--146},
     publisher = {mathdoc},
     volume = {84},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a11/}
}
                      
                      
                    TY - JOUR AU - O. A. Ladyzhenskaya TI - On limiting regime for modified Navier--Stokes equations in three-dimensional space JO - Zapiski Nauchnykh Seminarov POMI PY - 1979 SP - 131 EP - 146 VL - 84 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a11/ LA - ru ID - ZNSL_1979_84_a11 ER -
O. A. Ladyzhenskaya. On limiting regime for modified Navier--Stokes equations in three-dimensional space. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 131-146. http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a11/