Stability and uniqueness of the solution of the inverse seismo-kinematic problem in multidimentional case
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 3-6
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following kinematic problem is considered. Let $M$ be a compact $\nu$-dimensional domain with the metric $ds^2=g_{ij}dx^idx^j$. Given the function $\tau(\xi,\eta)=\int_{K_{\xi,\eta}}n\,ds$, a new metric $du=nds$ is constructed. $K_{\xi,\eta}$ is the geodesic connecting $\xi$ and $\eta$ in metric $du$; $\xi\eta\in\partial M$. The uniqueness of the solution is proved and the estimate
$$
\int_M(n_2-n_1)(n_2^{\nu-1}-n_1^{\nu-1})\,dx^1\wedge\dots\wedge dx^\nu
\leq\int_{\partial M\times\partial M}\Omega^{\tau_1,\tau_2}
$$
is obtained.
Refractive indices $n_1, n_2$ are the solutions of the inverse kinematic problem corresponding to functions $\tau_1,\tau_2$; $\Omega^{\tau_1,\tau_2}$ is the differential form on $\partial{M}\times\partial{M}$.
$$
\Omega^{\tau_1,\tau_2}=-\frac{\Gamma(\nu/2)(-1)^{(\nu-1)(\nu-2)/2}}
{2\pi^{\nu/2}(\nu-1)!}
\sum_{\alpha+\beta=\nu-2}D_\eta\tau\wedge D_\xi\tau(D_\eta
D_\xi\tau_1)^\alpha\wedge(D_\tau D_\xi\tau_2)^\beta,
$$
$\tau=\tau_2-\tau_1$, $D_\xi=d\xi^i\partial/\partial\xi^i$, $D_\eta=d\eta^i\partial/\partial\eta^i$, 
$i=1,\dots,\nu-1$.
			
            
            
            
          
        
      @article{ZNSL_1979_84_a0,
     author = {G. Ya. Beil'kin},
     title = {Stability and uniqueness of the solution of the inverse seismo-kinematic problem in multidimentional case},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {3--6},
     publisher = {mathdoc},
     volume = {84},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a0/}
}
                      
                      
                    TY - JOUR AU - G. Ya. Beil'kin TI - Stability and uniqueness of the solution of the inverse seismo-kinematic problem in multidimentional case JO - Zapiski Nauchnykh Seminarov POMI PY - 1979 SP - 3 EP - 6 VL - 84 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a0/ LA - ru ID - ZNSL_1979_84_a0 ER -
G. Ya. Beil'kin. Stability and uniqueness of the solution of the inverse seismo-kinematic problem in multidimentional case. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 3-6. http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a0/