Homotopy properties of algebraic sets
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part III, Tome 83 (1979), pp. 67-72
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper there are announced several homotopy theorems on algebraic subsets of complex projective spaces. Some of the theorems generalize and refine results of the preceding note of the author (RZhMat, 1978, 5A531). It is also asserted that any $n$-dimensional complex affine algebraic set has the homotopy type of a finite $n$-dimensional cellular space. A generalization is given, in two versions, of a theorem of Bart–Larsen (RZhMat, 1973, 7A587).
@article{ZNSL_1979_83_a2,
     author = {K. K. Karchyauskas},
     title = {Homotopy properties of algebraic sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--72},
     year = {1979},
     volume = {83},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_83_a2/}
}
TY  - JOUR
AU  - K. K. Karchyauskas
TI  - Homotopy properties of algebraic sets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 67
EP  - 72
VL  - 83
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_83_a2/
LA  - ru
ID  - ZNSL_1979_83_a2
ER  - 
%0 Journal Article
%A K. K. Karchyauskas
%T Homotopy properties of algebraic sets
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 67-72
%V 83
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_83_a2/
%G ru
%F ZNSL_1979_83_a2
K. K. Karchyauskas. Homotopy properties of algebraic sets. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part III, Tome 83 (1979), pp. 67-72. http://geodesic.mathdoc.fr/item/ZNSL_1979_83_a2/