Dense lattice packings of spheres in Euclidean spaces of dimension $n\leqslant16$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 144-146
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We present a number of lattice packings of equal spheres in $\mathbf R^n$ for $n\leqslant16$. For $n\leqslant15$, these packings have the same density as the densest known lattice packings. For $n=16$, the packing described here is denser than the known ones.
			
            
            
            
          
        
      @article{ZNSL_1979_82_a8,
     author = {B. F. Skubenko},
     title = {Dense lattice packings of spheres in {Euclidean} spaces of dimension $n\leqslant16$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {144--146},
     publisher = {mathdoc},
     volume = {82},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a8/}
}
                      
                      
                    B. F. Skubenko. Dense lattice packings of spheres in Euclidean spaces of dimension $n\leqslant16$. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 144-146. http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a8/
