Dense lattice packings of spheres in Euclidean spaces of dimension $n\leqslant16$
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 144-146

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a number of lattice packings of equal spheres in $\mathbf R^n$ for $n\leqslant16$. For $n\leqslant15$, these packings have the same density as the densest known lattice packings. For $n=16$, the packing described here is denser than the known ones.
@article{ZNSL_1979_82_a8,
     author = {B. F. Skubenko},
     title = {Dense lattice packings of spheres in {Euclidean} spaces of dimension $n\leqslant16$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {144--146},
     publisher = {mathdoc},
     volume = {82},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a8/}
}
TY  - JOUR
AU  - B. F. Skubenko
TI  - Dense lattice packings of spheres in Euclidean spaces of dimension $n\leqslant16$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 144
EP  - 146
VL  - 82
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a8/
LA  - ru
ID  - ZNSL_1979_82_a8
ER  - 
%0 Journal Article
%A B. F. Skubenko
%T Dense lattice packings of spheres in Euclidean spaces of dimension $n\leqslant16$
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 144-146
%V 82
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a8/
%G ru
%F ZNSL_1979_82_a8
B. F. Skubenko. Dense lattice packings of spheres in Euclidean spaces of dimension $n\leqslant16$. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 144-146. http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a8/