Dense lattice packings of spheres in Euclidean spaces of dimension $n\leqslant16$
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 144-146
Cet article a éte moissonné depuis la source Math-Net.Ru
We present a number of lattice packings of equal spheres in $\mathbf R^n$ for $n\leqslant16$. For $n\leqslant15$, these packings have the same density as the densest known lattice packings. For $n=16$, the packing described here is denser than the known ones.
@article{ZNSL_1979_82_a8,
author = {B. F. Skubenko},
title = {Dense lattice packings of spheres in {Euclidean} spaces of dimension $n\leqslant16$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {144--146},
year = {1979},
volume = {82},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a8/}
}
B. F. Skubenko. Dense lattice packings of spheres in Euclidean spaces of dimension $n\leqslant16$. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 144-146. http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a8/