Summation formulas for general Kloosterman sums
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 103-135

Voir la notice de l'article provenant de la source Math-Net.Ru

N. V. Kuznetsov's summation formula is generalized to the case of a discrete subgroup $G\subset SL_2(\mathbf R)$ and a system of multiplicators $\chi$, satisfying certain not too restrictive conditions. In the arithmetic cases, when $G$ is a congruence-subgroup in $SL_2(\mathbf Z)$, these conditions are satisfied. N. V. Kuznetsov's formula has been proved for the case $G=SL_2(\mathbf Z)$, $\chi=1$.
@article{ZNSL_1979_82_a6,
     author = {N. V. Proskurin},
     title = {Summation formulas for general {Kloosterman} sums},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--135},
     publisher = {mathdoc},
     volume = {82},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a6/}
}
TY  - JOUR
AU  - N. V. Proskurin
TI  - Summation formulas for general Kloosterman sums
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 103
EP  - 135
VL  - 82
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a6/
LA  - ru
ID  - ZNSL_1979_82_a6
ER  - 
%0 Journal Article
%A N. V. Proskurin
%T Summation formulas for general Kloosterman sums
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 103-135
%V 82
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a6/
%G ru
%F ZNSL_1979_82_a6
N. V. Proskurin. Summation formulas for general Kloosterman sums. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 103-135. http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a6/