Number of integral points in an elliptic region (a~remark on a theorem of A.\,V.~Malyshev)
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 100-102

Voir la notice de l'article provenant de la source Math-Net.Ru

One gives a refinement of A. V. Malyshev's asymptotic formula (Tr. Mat. Inst. Akad. Nauk SSSR, 65, 212 (1962)) for the number of integral points in a region on the surface of an $n$-dimensional ellipsoid in the case $n\geqslant4$. One corrects an error in the mentioned paper.
@article{ZNSL_1979_82_a5,
     author = {E. V. Podsypanin},
     title = {Number of integral points in an elliptic region (a~remark on a theorem of {A.\,V.~Malyshev)}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {100--102},
     publisher = {mathdoc},
     volume = {82},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a5/}
}
TY  - JOUR
AU  - E. V. Podsypanin
TI  - Number of integral points in an elliptic region (a~remark on a theorem of A.\,V.~Malyshev)
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 100
EP  - 102
VL  - 82
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a5/
LA  - ru
ID  - ZNSL_1979_82_a5
ER  - 
%0 Journal Article
%A E. V. Podsypanin
%T Number of integral points in an elliptic region (a~remark on a theorem of A.\,V.~Malyshev)
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 100-102
%V 82
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a5/
%G ru
%F ZNSL_1979_82_a5
E. V. Podsypanin. Number of integral points in an elliptic region (a~remark on a theorem of A.\,V.~Malyshev). Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 100-102. http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a5/