Number of integral points in an elliptic region (a~remark on a theorem of A.\,V.~Malyshev)
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 100-102
Voir la notice de l'article provenant de la source Math-Net.Ru
One gives a refinement of A. V. Malyshev's asymptotic formula (Tr. Mat. Inst. Akad. Nauk SSSR, 65, 212 (1962)) for the number of integral points in a region on the surface of an $n$-dimensional ellipsoid in the case $n\geqslant4$. One corrects an error in the mentioned paper.
@article{ZNSL_1979_82_a5,
author = {E. V. Podsypanin},
title = {Number of integral points in an elliptic region (a~remark on a theorem of {A.\,V.~Malyshev)}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {100--102},
publisher = {mathdoc},
volume = {82},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a5/}
}
TY - JOUR AU - E. V. Podsypanin TI - Number of integral points in an elliptic region (a~remark on a theorem of A.\,V.~Malyshev) JO - Zapiski Nauchnykh Seminarov POMI PY - 1979 SP - 100 EP - 102 VL - 82 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a5/ LA - ru ID - ZNSL_1979_82_a5 ER -
E. V. Podsypanin. Number of integral points in an elliptic region (a~remark on a theorem of A.\,V.~Malyshev). Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 100-102. http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a5/