A refinement of an estimate of the arithmetic minimum of the product of nonhomogeneous linear forms (regarding Minkowski's nonhomogeneous conjecture)
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 88-94

Voir la notice de l'article provenant de la source Math-Net.Ru

One refines an estimate of B. F. Skubenko (Tr. Mat. Inst. Akad. Nauk 148, 218–224 (1978)). Let $\Lambda$ be a point lattice of determinant $d(\Lambda)$ in the $n$-dimensional Euclidean space $\mathbf R^n$, and let $L\in\mathbf R^n$. We consider the nonhomogeneous $$ M=M(\Lambda,L)=\inf_{(z_1,\dots,z_n)\in\Lambda+L}\prod^n_{i=1}|z_i|. $$ One proves that there exists an effectively computable constant $n_0$ such that if $n\geqslant n_0$, then $$ M2^{-\frac n2}e^{20}n^{-\frac37}\log^{\frac47}nd(\Lambda). $$
@article{ZNSL_1979_82_a3,
     author = {Kh. N. Narzullaev and B. F. Skubenko},
     title = {A refinement of an estimate of the arithmetic minimum of the product of nonhomogeneous linear forms (regarding {Minkowski's} nonhomogeneous conjecture)},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--94},
     publisher = {mathdoc},
     volume = {82},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a3/}
}
TY  - JOUR
AU  - Kh. N. Narzullaev
AU  - B. F. Skubenko
TI  - A refinement of an estimate of the arithmetic minimum of the product of nonhomogeneous linear forms (regarding Minkowski's nonhomogeneous conjecture)
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 88
EP  - 94
VL  - 82
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a3/
LA  - ru
ID  - ZNSL_1979_82_a3
ER  - 
%0 Journal Article
%A Kh. N. Narzullaev
%A B. F. Skubenko
%T A refinement of an estimate of the arithmetic minimum of the product of nonhomogeneous linear forms (regarding Minkowski's nonhomogeneous conjecture)
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 88-94
%V 82
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a3/
%G ru
%F ZNSL_1979_82_a3
Kh. N. Narzullaev; B. F. Skubenko. A refinement of an estimate of the arithmetic minimum of the product of nonhomogeneous linear forms (regarding Minkowski's nonhomogeneous conjecture). Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 88-94. http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a3/