Representation of integers by positive ternary quadratic forms (a new modification of the discrete ergodic method)
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 33-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

One gives a detailed presentation of a new modification of the discrete ergodic method outlined in A. V. Malyshev's note (this Zapiski, 50, 179–186 (1975)). One gives new proofs for the asymptotic formulas obtained in Chap. VI of A. V. Malyshev's monography (Tr. Mat. Inst. Akad. Nauk SSSR, 65 (1962)). One obtains estimates for the remainder terms of this formulas under the assumption of some hypotheses about the zeros of Dirichlet's $L$-functions.
@article{ZNSL_1979_82_a2,
     author = {A. V. Malyshev and U. M. Pachev},
     title = {Representation of integers by positive ternary quadratic forms (a~new modification of the discrete ergodic method)},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--87},
     year = {1979},
     volume = {82},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a2/}
}
TY  - JOUR
AU  - A. V. Malyshev
AU  - U. M. Pachev
TI  - Representation of integers by positive ternary quadratic forms (a new modification of the discrete ergodic method)
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 33
EP  - 87
VL  - 82
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a2/
LA  - ru
ID  - ZNSL_1979_82_a2
ER  - 
%0 Journal Article
%A A. V. Malyshev
%A U. M. Pachev
%T Representation of integers by positive ternary quadratic forms (a new modification of the discrete ergodic method)
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 33-87
%V 82
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a2/
%G ru
%F ZNSL_1979_82_a2
A. V. Malyshev; U. M. Pachev. Representation of integers by positive ternary quadratic forms (a new modification of the discrete ergodic method). Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 33-87. http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a2/