Orders of the torsion of points of curves of genus~1
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 5-28
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $K$ be an algebraic number field of degree $n$; $h(K)$ let be the number of divisor classes of the field $K$; $Y:v^2=u^4+au^2+b$ is the Jacobian curve over $K$; $b(a^2-4b)=c^2\prod^N_{i=1}q_i$ where $C$ is an integral divisor, $q_1,\dots,q_N$ are distinct prime divisors. One proves that there exists an effectively computable constant $c=c(n,h(K),N)$, such that the order $m$ of the torsion of any primitive $K$-point on $Y$ is bounded by  it: $m\leqslant c$.
			
            
            
            
          
        
      @article{ZNSL_1979_82_a0,
     author = {V. A. Dem'yanenko},
     title = {Orders of the torsion of points of curves of genus~1},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--28},
     publisher = {mathdoc},
     volume = {82},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a0/}
}
                      
                      
                    V. A. Dem'yanenko. Orders of the torsion of points of curves of genus~1. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 5-28. http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a0/
