Orders of the torsion of points of curves of genus 1
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 5-28
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $K$ be an algebraic number field of degree $n$; $h(K)$ let be the number of divisor classes of the field $K$; $Y:v^2=u^4+au^2+b$ is the Jacobian curve over $K$; $b(a^2-4b)=c^2\prod^N_{i=1}q_i$ where $C$ is an integral divisor, $q_1,\dots,q_N$ are distinct prime divisors. One proves that there exists an effectively computable constant $c=c(n,h(K),N)$, such that the order $m$ of the torsion of any primitive $K$-point on $Y$ is bounded by it: $m\leqslant c$.
@article{ZNSL_1979_82_a0,
author = {V. A. Dem'yanenko},
title = {Orders of the torsion of points of curves of genus~1},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--28},
year = {1979},
volume = {82},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a0/}
}
V. A. Dem'yanenko. Orders of the torsion of points of curves of genus 1. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 5, Tome 82 (1979), pp. 5-28. http://geodesic.mathdoc.fr/item/ZNSL_1979_82_a0/