The constant factor in error estimates of the variational-difference approximation
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 125-166
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $U\in W_p^{(2s)}(0,1)$ and let the original functions $\omega_{q,s}(x)$, $0\leqslant q\leqslant s-1$ vanish outside the interval $[0,2]$, while on each of the intervals $(0,1)$ and $(1,2)$ they are polynomials of degree $2s-1$. Let 
\begin{equation}
U^h(x)=\sum_{q=0}^{2s-1}\sum_{j=-1}^{2n-1}h^2U^{(q)}((j+1)h)\omega_{q,s}
\biggl(\dfrac{x}{h}-j\biggr),\quad h=\dfrac{1}{2n}.
\tag{1}
\end{equation}	
Then, as we know, 
\begin{equation}
\|U-U^h\|_{l_p(\overline{s})}\leqslant C(s,\overline{s})h^{2s-\overline{s}}\|U^{(2s)}\|_{L_p(0,1)}\quad
\overline{s}\leqslant s;
\tag{2}
\end{equation}	
similar results were also obtained for functions of many variables. In this article we derive bounds on the polynomials $\sigma_{q,s}(t)=\omega_{q,s}(t+1)$, $0\leqslant t\leqslant1$ and their derivatives of order $\leqslant s$ in the metrics $C$ and $L_p$; our bounds prove to be essentially better than Markovian. A bound on $C(s,\overline{s})$ in inequality (2) is obtained. In the many-variable case we consider the approximation of functions from the classes $C(\Omega)$ and $W_p^{(2s)}(\Omega)$ by functions $U^t$ analogous to the functions (1); the original functions are obtained by multiplying one-dimensional piecewise-polynomial original functions. For the functions of the class $W_p^{(2s)}(\Omega)$ the corresponding constant $C(s,\overline{s})$ depends on two additional quantities, which are called here the  averaging constant  and the  extension constant.  An estimate of the “averaging constant” is obtained; the “extension constant” is estimated for the Hestenes extension.
			
            
            
            
          
        
      @article{ZNSL_1978_80_a7,
     author = {S. G. Mikhlin},
     title = {The constant factor in error estimates of the variational-difference approximation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {125--166},
     publisher = {mathdoc},
     volume = {80},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a7/}
}
                      
                      
                    S. G. Mikhlin. The constant factor in error estimates of the variational-difference approximation. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 125-166. http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a7/