Minimization of the maximum deviation with preemption
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 117-124
Cet article a éte moissonné depuis la source Math-Net.Ru
We solve the scheduling problem to minimize the maximum deviation of the job completion times from the respective deadlines, with the starting time at an integer point in the interval $[t_1,t_2]$. It is shown that for an arbitrary set of jobs $Z$. the optimal-schedule penalty function $F_Z(t)$ (as a function of the integer argument $t$) is such that $\Delta F_Z(t)= \begin{cases} -1, & t\in(-\infty,a(Z)-1],\\ 0, & t\in[a(Z),b(Z)-1],\\ +1, & t\in[b(Z),+\infty) \end{cases}$ for some integer $a(Z)\leqslant b(Z)$. If $a(Z)$ and $b(Z)$ coincide, the function $\Delta F_Z(t)$ has no zero values. An optimal scheduling algorithm is proposed which requires $C\cdot K\bigl(\max_i\{D_i\}-\min_i\{d_i\}+\sum_1^kV_i\bigr)$ computer operations.
@article{ZNSL_1978_80_a6,
author = {N. B. Lebedinskaya},
title = {Minimization of the maximum deviation with preemption},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {117--124},
year = {1978},
volume = {80},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a6/}
}
N. B. Lebedinskaya. Minimization of the maximum deviation with preemption. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 117-124. http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a6/