Minimization of the maximum deviation with preemption
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 117-124
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We solve the scheduling problem to minimize the maximum deviation of the job completion times from the respective deadlines, with the starting time at an integer point in the interval $[t_1,t_2]$. It is shown that for an arbitrary set of jobs $Z$. the optimal-schedule penalty function $F_Z(t)$ (as a function of the integer argument $t$) is such that 
$\Delta F_Z(t)=
\begin{cases}
-1,  t\in(-\infty,a(Z)-1],\\
0,  t\in[a(Z),b(Z)-1],\\
+1,  t\in[b(Z),+\infty)
\end{cases}$
for some integer $a(Z)\leqslant b(Z)$. If $a(Z)$ and $b(Z)$ coincide, the function $\Delta F_Z(t)$ has no zero values. An optimal scheduling algorithm is proposed which requires $C\cdot K\bigl(\max_i\{D_i\}-\min_i\{d_i\}+\sum_1^kV_i\bigr)$ computer operations.
			
            
            
            
          
        
      @article{ZNSL_1978_80_a6,
     author = {N. B. Lebedinskaya},
     title = {Minimization of the maximum deviation with preemption},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {117--124},
     publisher = {mathdoc},
     volume = {80},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a6/}
}
                      
                      
                    N. B. Lebedinskaya. Minimization of the maximum deviation with preemption. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 117-124. http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a6/