A multipoint finite-difference scheme for the problem of bending of rectangular orthotropic plates with freely supported edges: Construction and convergence estimate
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 66-82

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary-value problem \begin{gather*} D_1\dfrac{\partial^4w}{\partial x^4}+2D_2\dfrac{\partial^4w}{\partial x^2\partial y^2}+D_3\dfrac{\partial^4w}{\partial y^4}=f(x,y) \\ W|_{y=0;b}=0,\quad\dfrac{\partial^2w}{\partial y^2}|_{y=0'b}=0;\quad W|_{x=-a;a}=0,\quad \dfrac{\partial^2w}{\partial y^2}|_{x=-a'a}=0 \end{gather*} of static deflection of a rectangular orthotropic plate is replaced with a finite-difference problem. The rectangle $[-a\leqslant x\leqslant a, 0\leqslant y\leqslant b]$ is partitioned into a mesh with step $h$ in the direction $y$ and $h_1$, in the direction $x$; second derivatives with respect to $y$ and $x$ are replaced with multipoint approximations using the templates $2p+1$, $2p_1+1$ (where $p$ and $p_1$ are arbitrary natural numbers) with errors $O(h^{2p})$, $O(h^{2p_1})$; the fourth-order derivatives are replaced with approximations using the templates $4p+1$ and $4p_1+1$ with the same errors. The finite-difference system of linear algebraic equations is transformed into a decomposable system. The convergence of the proposed method is estimated.
@article{ZNSL_1978_80_a3,
     author = {A. P. Kubanskaya},
     title = {A multipoint finite-difference scheme for the problem of bending of rectangular orthotropic plates with freely supported edges: {Construction} and convergence estimate},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {66--82},
     publisher = {mathdoc},
     volume = {80},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a3/}
}
TY  - JOUR
AU  - A. P. Kubanskaya
TI  - A multipoint finite-difference scheme for the problem of bending of rectangular orthotropic plates with freely supported edges: Construction and convergence estimate
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 66
EP  - 82
VL  - 80
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a3/
LA  - ru
ID  - ZNSL_1978_80_a3
ER  - 
%0 Journal Article
%A A. P. Kubanskaya
%T A multipoint finite-difference scheme for the problem of bending of rectangular orthotropic plates with freely supported edges: Construction and convergence estimate
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 66-82
%V 80
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a3/
%G ru
%F ZNSL_1978_80_a3
A. P. Kubanskaya. A multipoint finite-difference scheme for the problem of bending of rectangular orthotropic plates with freely supported edges: Construction and convergence estimate. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 66-82. http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a3/