A multipoint finite-difference scheme for the problem of bending of rectangular orthotropic plates with freely supported edges: Construction and convergence estimate
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 66-82
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The boundary-value problem 
\begin{gather*}
D_1\dfrac{\partial^4w}{\partial x^4}+2D_2\dfrac{\partial^4w}{\partial x^2\partial y^2}+D_3\dfrac{\partial^4w}{\partial y^4}=f(x,y)
\\
W|_{y=0;b}=0,\quad\dfrac{\partial^2w}{\partial y^2}|_{y=0'b}=0;\quad W|_{x=-a;a}=0,\quad
\dfrac{\partial^2w}{\partial y^2}|_{x=-a'a}=0
\end{gather*}
of static deflection of a rectangular orthotropic plate is replaced with a finite-difference problem. The rectangle $[-a\leqslant x\leqslant a, 0\leqslant y\leqslant b]$ is partitioned into a mesh with step $h$ in the direction $y$ and $h_1$, in the direction $x$; second derivatives with respect to $y$ and $x$ are replaced with multipoint approximations using the templates $2p+1$, $2p_1+1$ (where $p$ and $p_1$ are arbitrary natural numbers) with errors $O(h^{2p})$, $O(h^{2p_1})$; the fourth-order derivatives are replaced with approximations using the templates $4p+1$ and $4p_1+1$ with the same errors. The finite-difference system of linear algebraic equations is transformed into a decomposable system. The convergence of the proposed method is estimated.
			
            
            
            
          
        
      @article{ZNSL_1978_80_a3,
     author = {A. P. Kubanskaya},
     title = {A multipoint finite-difference scheme for the problem of bending of rectangular orthotropic plates with freely supported edges: {Construction} and convergence estimate},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {66--82},
     publisher = {mathdoc},
     volume = {80},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a3/}
}
                      
                      
                    TY - JOUR AU - A. P. Kubanskaya TI - A multipoint finite-difference scheme for the problem of bending of rectangular orthotropic plates with freely supported edges: Construction and convergence estimate JO - Zapiski Nauchnykh Seminarov POMI PY - 1978 SP - 66 EP - 82 VL - 80 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a3/ LA - ru ID - ZNSL_1978_80_a3 ER -
%0 Journal Article %A A. P. Kubanskaya %T A multipoint finite-difference scheme for the problem of bending of rectangular orthotropic plates with freely supported edges: Construction and convergence estimate %J Zapiski Nauchnykh Seminarov POMI %D 1978 %P 66-82 %V 80 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a3/ %G ru %F ZNSL_1978_80_a3
A. P. Kubanskaya. A multipoint finite-difference scheme for the problem of bending of rectangular orthotropic plates with freely supported edges: Construction and convergence estimate. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 66-82. http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a3/