Solution of the eigenvalue problem for the regular bundle $D(\lambda)=\lambda A_0-A_1$ using deflated subspaces
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 48-65
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the solution of the generalized eigenvalue problem $$ (A_0\lambda-A_1)x=0, $$ in the case where one or both of the matrices $A_0$, $A_1$ are degenerate but the intersection of their null spaces is empty. Using orthogonal matrices $\mathscr P$ and which are independent of $\lambda$ the original problem is transformed to a simpler one in which the pencil is of smaller dimension. The construction of $P$ and $Q$ uses the normalization process. We include an Algol program and sample runs.
@article{ZNSL_1978_80_a2,
author = {T. Ya. Kon'kova},
title = {Solution of the eigenvalue problem for the regular bundle $D(\lambda)=\lambda A_0-A_1$ using deflated subspaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {48--65},
year = {1978},
volume = {80},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a2/}
}
TY - JOUR AU - T. Ya. Kon'kova TI - Solution of the eigenvalue problem for the regular bundle $D(\lambda)=\lambda A_0-A_1$ using deflated subspaces JO - Zapiski Nauchnykh Seminarov POMI PY - 1978 SP - 48 EP - 65 VL - 80 UR - http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a2/ LA - ru ID - ZNSL_1978_80_a2 ER -
T. Ya. Kon'kova. Solution of the eigenvalue problem for the regular bundle $D(\lambda)=\lambda A_0-A_1$ using deflated subspaces. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 48-65. http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a2/