Uniform convergence of the implicit difference scheme of a nonlinear boundary-value problem for a second-order nonlinear parabolic equation
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 249-262
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The nonlinear boundary-value problem for the parabolic equation
\begin{gather}
\dfrac{\partial u}{\partial t}=F(t,x,u,\dfrac{\partial u}{\partial x},\dfrac{\partial^2u}{\partial x^2})\quad
0\leqslant T,\quad 0\leqslant x1
\tag{1}
\\
u(0,x)=\omega(x),\quad 0\leqslant1
\tag{2}
\\
\dfrac{\partial u(t,0)}{\partial x}=\varphi(t,u(t,0)),\quad u(t,1)=0,\quad 0\leqslant T
\tag{3}
\end{gather}
is approximated by the boundary-value difference problem
\begin{gather}
P_{i0}(u_{ij})=\dfrac{u_{i0}-u_{i-1,0}}{\tau}-F(t_1,0,u_{i0},\varphi(t_i,u_{i0}),\quad
\dfrac{2}{h}\biggl[\dfrac{u_{i1}-u_{i0}}{h}-\varphi(t_i,u_{i0})\biggr]\quad i=1,\dots,m
\tag{4}
\\
P_{ij}(u_{ij})=\dfrac{u_{ij}-u_{i-1,j}}{\tau}-F(t_i,x_j,\delta u_{ij},\Delta u_{ij}),\quad
 i=1,2,\dots,m,\quad j=1,\dots,n
\tag{5}
\\
u_{0j}=\omega_j\quad j=0,1,\dots,n;\quad u_{i,n+1}=0\quad i=1,\dots,m
\tag{6}
\\
\delta u_{ij}=\dfrac{1}{2h}[u_{i,j+1}-u_{i,j-1}],\quad 
\Delta u_{ij}=\dfrac{1}{h^2}[u_{i,j+1}-2u_{ij}+u_{i,j-1}].
\tag{7}
\end{gather}
Under certain assumptions on the solutions of the original problem and functions $F$ and $\varphi$, for small $\tau$ and $h$ we prove the existence of a solution of
problem (4)–(6) and derive a bound on the approximation error. Under certain restrictions
on the steps $h$ and $\tau$ and the functions $F$ and $\varphi$, we prove
that the problem (4)–(6) has a nonnegative solution.
			
            
            
            
          
        
      @article{ZNSL_1978_80_a13,
     author = {M. N. Yakovlev},
     title = {Uniform convergence of the implicit difference scheme of a nonlinear boundary-value problem for a second-order nonlinear parabolic equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {249--262},
     publisher = {mathdoc},
     volume = {80},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a13/}
}
                      
                      
                    TY - JOUR AU - M. N. Yakovlev TI - Uniform convergence of the implicit difference scheme of a nonlinear boundary-value problem for a second-order nonlinear parabolic equation JO - Zapiski Nauchnykh Seminarov POMI PY - 1978 SP - 249 EP - 262 VL - 80 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a13/ LA - ru ID - ZNSL_1978_80_a13 ER -
%0 Journal Article %A M. N. Yakovlev %T Uniform convergence of the implicit difference scheme of a nonlinear boundary-value problem for a second-order nonlinear parabolic equation %J Zapiski Nauchnykh Seminarov POMI %D 1978 %P 249-262 %V 80 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a13/ %G ru %F ZNSL_1978_80_a13
M. N. Yakovlev. Uniform convergence of the implicit difference scheme of a nonlinear boundary-value problem for a second-order nonlinear parabolic equation. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 249-262. http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a13/