Approximation of functions from $B^\ell_{p,\theta}(G)$ by anisotropic averages
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 30-47
Cet article a éte moissonné depuis la source Math-Net.Ru
The article considers the approximation of functions from O. V. Besov's class $B^\ell_{p,\theta}(G)$ by anisotropic average functions. Proofs are given of the approximation theorem, the inverse theorem of approximation theory, and the saturation theorem associated with the choice of the averaging kernel.
@article{ZNSL_1978_80_a1,
author = {V. P. Il'in},
title = {Approximation of functions from $B^\ell_{p,\theta}(G)$ by anisotropic averages},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {30--47},
year = {1978},
volume = {80},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a1/}
}
V. P. Il'in. Approximation of functions from $B^\ell_{p,\theta}(G)$ by anisotropic averages. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 30-47. http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a1/