Approximation of functions from $B^\ell_{p,\theta}(G)$ by anisotropic averages
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 30-47

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the approximation of functions from O. V. Besov's class $B^\ell_{p,\theta}(G)$ by anisotropic average functions. Proofs are given of the approximation theorem, the inverse theorem of approximation theory, and the saturation theorem associated with the choice of the averaging kernel.
@article{ZNSL_1978_80_a1,
     author = {V. P. Il'in},
     title = {Approximation of functions from $B^\ell_{p,\theta}(G)$ by anisotropic averages},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {30--47},
     publisher = {mathdoc},
     volume = {80},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a1/}
}
TY  - JOUR
AU  - V. P. Il'in
TI  - Approximation of functions from $B^\ell_{p,\theta}(G)$ by anisotropic averages
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 30
EP  - 47
VL  - 80
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a1/
LA  - ru
ID  - ZNSL_1978_80_a1
ER  - 
%0 Journal Article
%A V. P. Il'in
%T Approximation of functions from $B^\ell_{p,\theta}(G)$ by anisotropic averages
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 30-47
%V 80
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a1/
%G ru
%F ZNSL_1978_80_a1
V. P. Il'in. Approximation of functions from $B^\ell_{p,\theta}(G)$ by anisotropic averages. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms, Tome 80 (1978), pp. 30-47. http://geodesic.mathdoc.fr/item/ZNSL_1978_80_a1/