On S. U. Bernstein's regularity type conditions in a problem of empirical Bayes approach
Zapiski Nauchnykh Seminarov POMI, Studies in the statistical estimation theory. Part II, Tome 79 (1978), pp. 38-43
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the aposteriorl distribution of a random success probability $X$ in the binomial scheme can be approximated by a suitable beta-distrubution if the number $n$ of trials tends to infinity and an apriori density function of $X$ belongs to $L^r[0,1]$ for some $r\geq1$.
@article{ZNSL_1978_79_a3,
author = {M. S. Nikulin},
title = {On {S.} {U.~Bernstein's} regularity type conditions in a~problem of empirical {Bayes} approach},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {38--43},
year = {1978},
volume = {79},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_79_a3/}
}
M. S. Nikulin. On S. U. Bernstein's regularity type conditions in a problem of empirical Bayes approach. Zapiski Nauchnykh Seminarov POMI, Studies in the statistical estimation theory. Part II, Tome 79 (1978), pp. 38-43. http://geodesic.mathdoc.fr/item/ZNSL_1978_79_a3/