On S.\,U.~Bernstein's regularity type conditions in a~problem of empirical Bayes approach
Zapiski Nauchnykh Seminarov POMI, Studies in the statistical estimation theory. Part II, Tome 79 (1978), pp. 38-43

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the aposteriorl distribution of a random success probability $X$ in the binomial scheme can be approximated by a suitable beta-distrubution if the number $n$ of trials tends to infinity and an apriori density function of $X$ belongs to $L^r[0,1]$ for some $r\geq1$.
@article{ZNSL_1978_79_a3,
     author = {M. S. Nikulin},
     title = {On {S.\,U.~Bernstein's} regularity type conditions in a~problem of empirical {Bayes} approach},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {38--43},
     publisher = {mathdoc},
     volume = {79},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_79_a3/}
}
TY  - JOUR
AU  - M. S. Nikulin
TI  - On S.\,U.~Bernstein's regularity type conditions in a~problem of empirical Bayes approach
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 38
EP  - 43
VL  - 79
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_79_a3/
LA  - ru
ID  - ZNSL_1978_79_a3
ER  - 
%0 Journal Article
%A M. S. Nikulin
%T On S.\,U.~Bernstein's regularity type conditions in a~problem of empirical Bayes approach
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 38-43
%V 79
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_79_a3/
%G ru
%F ZNSL_1978_79_a3
M. S. Nikulin. On S.\,U.~Bernstein's regularity type conditions in a~problem of empirical Bayes approach. Zapiski Nauchnykh Seminarov POMI, Studies in the statistical estimation theory. Part II, Tome 79 (1978), pp. 38-43. http://geodesic.mathdoc.fr/item/ZNSL_1978_79_a3/