A shortwave source near a smooth, convex hypersurface and the spectral function of the Laplace operator on a Riemannian manifold
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 9, Tome 78 (1978), pp. 128-133

Voir la notice de l'article provenant de la source Math-Net.Ru

The Tauberian theorem of B. M. Levitan reduces the question of the asymptotics of the spectral function of the Laplace operator on a smooth Riemannian manifold with boundary to the problem of constructing the asymptotics of a Green function possessing certain additional properties. The paper is devoted to the construction of the appropriate Green function for the case of a geodesically concave boundary.
@article{ZNSL_1978_78_a8,
     author = {Ya. V. Kurylev},
     title = {A shortwave source near a smooth, convex hypersurface and the spectral function of the {Laplace} operator on a {Riemannian} manifold},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {128--133},
     publisher = {mathdoc},
     volume = {78},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a8/}
}
TY  - JOUR
AU  - Ya. V. Kurylev
TI  - A shortwave source near a smooth, convex hypersurface and the spectral function of the Laplace operator on a Riemannian manifold
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 128
EP  - 133
VL  - 78
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a8/
LA  - ru
ID  - ZNSL_1978_78_a8
ER  - 
%0 Journal Article
%A Ya. V. Kurylev
%T A shortwave source near a smooth, convex hypersurface and the spectral function of the Laplace operator on a Riemannian manifold
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 128-133
%V 78
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a8/
%G ru
%F ZNSL_1978_78_a8
Ya. V. Kurylev. A shortwave source near a smooth, convex hypersurface and the spectral function of the Laplace operator on a Riemannian manifold. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 9, Tome 78 (1978), pp. 128-133. http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a8/