Asymptotic behavior of sums of the type $\sum_{k=m}^{n-1}\exp(i\omega\sqrt{nk})$ as $n,m\to\infty$
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 9, Tome 78 (1978), pp. 54-59
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotic behavior as $n,m\to\infty$ of the sum
$$
\sum_{k,l=m}^{n-1}\exp[i\omega\sqrt{n}(\sqrt{k}+\sqrt{l})]\Phi\biggl(1-\frac{|\sqrt{k}-\sqrt{l}|}{\Delta}\biggr),
$$
is studied where $\Phi(t)=0$ for $t\leqslant0$ and $t$ for $t>0$.
@article{ZNSL_1978_78_a3,
author = {M. V. Buslaeva},
title = {Asymptotic behavior of sums of the type $\sum_{k=m}^{n-1}\exp(i\omega\sqrt{nk})$ as $n,m\to\infty$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--59},
publisher = {mathdoc},
volume = {78},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a3/}
}
TY - JOUR
AU - M. V. Buslaeva
TI - Asymptotic behavior of sums of the type $\sum_{k=m}^{n-1}\exp(i\omega\sqrt{nk})$ as $n,m\to\infty$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 1978
SP - 54
EP - 59
VL - 78
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a3/
LA - ru
ID - ZNSL_1978_78_a3
ER -
M. V. Buslaeva. Asymptotic behavior of sums of the type $\sum_{k=m}^{n-1}\exp(i\omega\sqrt{nk})$ as $n,m\to\infty$. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 9, Tome 78 (1978), pp. 54-59. http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a3/