Explicit solution of the inverse kinematic problem in the non-Herglotz case
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 9, Tome 78 (1978), pp. 20-29

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse kinematic problem is solved in the half space $R_+^{\nu+1}=\{(x,z)\mid z\geqslant0,\ x\in R^\nu\}$, $\nu\geqslant1$ under the assumption that the index of refraction can be represented in the form $$ n^2(x,z)=k^2(z)+\sum^\nu_{j=1}\Phi^2_j(x_j),\quad n_z0. $$ The solution obtained is a generalization of the Herglotz–Wiechert formula. A formula is presented for the solution of the inverse kinematic problem in the general case of separation of variables in the eikonal equation.
@article{ZNSL_1978_78_a1,
     author = {G. Ya. Beil'kin},
     title = {Explicit solution of the inverse kinematic problem in the {non-Herglotz} case},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {20--29},
     publisher = {mathdoc},
     volume = {78},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a1/}
}
TY  - JOUR
AU  - G. Ya. Beil'kin
TI  - Explicit solution of the inverse kinematic problem in the non-Herglotz case
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 20
EP  - 29
VL  - 78
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a1/
LA  - ru
ID  - ZNSL_1978_78_a1
ER  - 
%0 Journal Article
%A G. Ya. Beil'kin
%T Explicit solution of the inverse kinematic problem in the non-Herglotz case
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 20-29
%V 78
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a1/
%G ru
%F ZNSL_1978_78_a1
G. Ya. Beil'kin. Explicit solution of the inverse kinematic problem in the non-Herglotz case. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 9, Tome 78 (1978), pp. 20-29. http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a1/