An application of scattering theory to one hydrodynamics problem
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics, Tome 77 (1978), pp. 57-75

Voir la notice de l'article provenant de la source Math-Net.Ru

The linearized equation of motion of a layer of an ideal incompressible liquid over an uneven bottom is written as an equation of form $if'=Af$ in a Hubert space with a certain self-adjoint operator $A$. Scattering theory methods are used to study the spectrum and to describe the eigenfunctions of operator $A$ under the assumption that only the compact part of the bottom differs from a horizontal plane.
@article{ZNSL_1978_77_a2,
     author = {M. V. Buslaeva},
     title = {An application of scattering theory to one hydrodynamics problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {57--75},
     publisher = {mathdoc},
     volume = {77},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_77_a2/}
}
TY  - JOUR
AU  - M. V. Buslaeva
TI  - An application of scattering theory to one hydrodynamics problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 57
EP  - 75
VL  - 77
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_77_a2/
LA  - ru
ID  - ZNSL_1978_77_a2
ER  - 
%0 Journal Article
%A M. V. Buslaeva
%T An application of scattering theory to one hydrodynamics problem
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 57-75
%V 77
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_77_a2/
%G ru
%F ZNSL_1978_77_a2
M. V. Buslaeva. An application of scattering theory to one hydrodynamics problem. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics, Tome 77 (1978), pp. 57-75. http://geodesic.mathdoc.fr/item/ZNSL_1978_77_a2/