Completely integrable model of classical field theory with nontrivial particle interaction in two-dimensional space-time
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics, Tome 77 (1978), pp. 24-56

Voir la notice de l'article provenant de la source Math-Net.Ru

The complete integrability of a nonlinear relativistic equation, being a generalization of the sine-Gordon equation for the case of group $SO(3)$, is shown. The soliton spectrum is described and exact solutions describing their interaction are obtained. It is shown that together with elastic scattering there exist the processes of decay and merging of solitons. A generalization of the sine-Gordon equation for an arbitrary compact Lie group is discussed.
@article{ZNSL_1978_77_a1,
     author = {A. S. Budagov},
     title = {Completely integrable model of classical field theory with nontrivial particle interaction in two-dimensional space-time},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {24--56},
     publisher = {mathdoc},
     volume = {77},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_77_a1/}
}
TY  - JOUR
AU  - A. S. Budagov
TI  - Completely integrable model of classical field theory with nontrivial particle interaction in two-dimensional space-time
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 24
EP  - 56
VL  - 77
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_77_a1/
LA  - ru
ID  - ZNSL_1978_77_a1
ER  - 
%0 Journal Article
%A A. S. Budagov
%T Completely integrable model of classical field theory with nontrivial particle interaction in two-dimensional space-time
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 24-56
%V 77
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_77_a1/
%G ru
%F ZNSL_1978_77_a1
A. S. Budagov. Completely integrable model of classical field theory with nontrivial particle interaction in two-dimensional space-time. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics, Tome 77 (1978), pp. 24-56. http://geodesic.mathdoc.fr/item/ZNSL_1978_77_a1/