Siegel's formula for genus 2
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 210-215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $S$ be a semi-integral, symmetric, positive-definite $m\times m$ matrix; $m\geqslant n\geqslant1$. By the Siegel fundamental formula we mean the identity between the Siegel theta series of genus $n$, associated with the genus of the matrix $S$, and the correspond ing Eisenstein-Siegel series (C. L. Siegel, Lectures on the Analytical Theory of Quadratic Forms, 3rd rev. edition, Peppmüller, Göttingen, 1963). The validity of the mentioned formula for $m/2\leqslant n+1$ is an open problem in the general case. In this paper we prove Siegel's formula for $n=2$, $m=6$.
@article{ZNSL_1978_76_a9,
     author = {O. M. Fomenko},
     title = {Siegel's formula for genus~2},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {210--215},
     year = {1978},
     volume = {76},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a9/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Siegel's formula for genus 2
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 210
EP  - 215
VL  - 76
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a9/
LA  - ru
ID  - ZNSL_1978_76_a9
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Siegel's formula for genus 2
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 210-215
%V 76
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a9/
%G ru
%F ZNSL_1978_76_a9
O. M. Fomenko. Siegel's formula for genus 2. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 210-215. http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a9/