Siegel's formula for genus 2
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 210-215
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $S$ be a semi-integral, symmetric, positive-definite $m\times m$ matrix; $m\geqslant n\geqslant1$. By the Siegel fundamental formula we mean the identity between the Siegel theta series of genus $n$, associated with the genus of the matrix $S$, and the correspond ing Eisenstein-Siegel series (C. L. Siegel, Lectures on the Analytical Theory of Quadratic Forms, 3rd rev. edition, Peppmüller, Göttingen, 1963). The validity of the mentioned formula for $m/2\leqslant n+1$ is an open problem in the general case. In this paper we prove Siegel's formula for $n=2$, $m=6$.
@article{ZNSL_1978_76_a9,
author = {O. M. Fomenko},
title = {Siegel's formula for genus~2},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {210--215},
year = {1978},
volume = {76},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a9/}
}
O. M. Fomenko. Siegel's formula for genus 2. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 210-215. http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a9/