Maximum problem for the fourth diameter in a family of continua of fixed capacity
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 167-209 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The main content of this paper is a full proof of a theorem on the maximal fourth diameter in a family of continua of unit capacity. A brief exposition of the main elements of the proof of this theorem was given in an earlier paper of the author.
@article{ZNSL_1978_76_a8,
     author = {G. V. Kuz'mina},
     title = {Maximum problem for the fourth diameter in a family of continua of fixed capacity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--209},
     year = {1978},
     volume = {76},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a8/}
}
TY  - JOUR
AU  - G. V. Kuz'mina
TI  - Maximum problem for the fourth diameter in a family of continua of fixed capacity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 167
EP  - 209
VL  - 76
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a8/
LA  - ru
ID  - ZNSL_1978_76_a8
ER  - 
%0 Journal Article
%A G. V. Kuz'mina
%T Maximum problem for the fourth diameter in a family of continua of fixed capacity
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 167-209
%V 76
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a8/
%G ru
%F ZNSL_1978_76_a8
G. V. Kuz'mina. Maximum problem for the fourth diameter in a family of continua of fixed capacity. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 167-209. http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a8/