Spectral methods in arithmetic problems
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 159-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Combining ideas of convolution due to Rankin with spectral considerations of Selberg, the author proposes a new approach to obtaining mean values for certain number-theoretic functions $f(n)$. This approach is illustrated for the examples of functions $f(n)=\tau(Mn^2+N)$, $\tau(n)\tau(Mn+N)$, where $\tau(n)$ is the number of divisors of $n$.
@article{ZNSL_1978_76_a7,
     author = {N. V. Kuznetsov},
     title = {Spectral methods in arithmetic problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {159--166},
     year = {1978},
     volume = {76},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a7/}
}
TY  - JOUR
AU  - N. V. Kuznetsov
TI  - Spectral methods in arithmetic problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 159
EP  - 166
VL  - 76
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a7/
LA  - ru
ID  - ZNSL_1978_76_a7
ER  - 
%0 Journal Article
%A N. V. Kuznetsov
%T Spectral methods in arithmetic problems
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 159-166
%V 76
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a7/
%G ru
%F ZNSL_1978_76_a7
N. V. Kuznetsov. Spectral methods in arithmetic problems. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 159-166. http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a7/