Spectral methods in arithmetic problems
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 159-166
Cet article a éte moissonné depuis la source Math-Net.Ru
Combining ideas of convolution due to Rankin with spectral considerations of Selberg, the author proposes a new approach to obtaining mean values for certain number-theoretic functions $f(n)$. This approach is illustrated for the examples of functions $f(n)=\tau(Mn^2+N)$, $\tau(n)\tau(Mn+N)$, where $\tau(n)$ is the number of divisors of $n$.
@article{ZNSL_1978_76_a7,
author = {N. V. Kuznetsov},
title = {Spectral methods in arithmetic problems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {159--166},
year = {1978},
volume = {76},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a7/}
}
N. V. Kuznetsov. Spectral methods in arithmetic problems. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 159-166. http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a7/