Zeros of the Dirichlet $L$-functions on short segments of the critical line
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 72-88
Cet article a éte moissonné depuis la source Math-Net.Ru
One obtains an estimate for the number of zeros of the Dirichlet $L$-functions on the critical line $\operatorname{Re}s=\dfrac12$, depending on the length of the segment. The basis of the proof consists in the finding of the minimum of a certain biquadratic form with arithmetic coefficients.
@article{ZNSL_1978_76_a4,
author = {V. G. Zhuravlev},
title = {Zeros of the {Dirichlet} $L$-functions on short segments of the critical line},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {72--88},
year = {1978},
volume = {76},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a4/}
}
V. G. Zhuravlev. Zeros of the Dirichlet $L$-functions on short segments of the critical line. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 72-88. http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a4/