Rationality of generating series for the Fourier coefficient of Siegel modular forms of genus $n$
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 65-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

One proves the rationality of the multiple power series of the form $$ \sum_{\delta_1\geqslant0}\dots\sum_{\delta_r\geqslant0}a(p_1^{\delta_1}\dots p_r^{\delta_r}N) t_1^{\delta_1}\dots t_r^{\delta_r}, $$ where $a(\dots)$ is the Fourier coefficient of an arbitrary Siegel modular form of genus $n\ge 1$ relative to a congruence subgroup of the group $Sp_n(\mathbf Z)$, $p_1,\dots,p_r$ being a collection of prime numbers, dividing the step of the form.
@article{ZNSL_1978_76_a3,
     author = {S. A. Evdokimov},
     title = {Rationality of generating series for the {Fourier} coefficient of {Siegel} modular forms of genus~$n$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {65--71},
     year = {1978},
     volume = {76},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a3/}
}
TY  - JOUR
AU  - S. A. Evdokimov
TI  - Rationality of generating series for the Fourier coefficient of Siegel modular forms of genus $n$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 65
EP  - 71
VL  - 76
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a3/
LA  - ru
ID  - ZNSL_1978_76_a3
ER  - 
%0 Journal Article
%A S. A. Evdokimov
%T Rationality of generating series for the Fourier coefficient of Siegel modular forms of genus $n$
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 65-71
%V 76
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a3/
%G ru
%F ZNSL_1978_76_a3
S. A. Evdokimov. Rationality of generating series for the Fourier coefficient of Siegel modular forms of genus $n$. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 65-71. http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a3/