Asymptotic behavior of the number of representations of large integers by certain positive-definite ternary quadratic forms
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 53-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Continuing the work in an earlier paper, the author uses an assumption concerning the location of zeros of Dirichlet $L$-series in order to derive an asymptotic formula for the number of representations of large integers by the ternary form $f(x,y,z)=x^2+2y^2+Dz^2$, where $D$ is of the form $x^2+2y^2$.
@article{ZNSL_1978_76_a1,
     author = {E. P. Golubeva},
     title = {Asymptotic behavior of the number of representations of large integers by certain positive-definite ternary quadratic forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {53--59},
     year = {1978},
     volume = {76},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a1/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - Asymptotic behavior of the number of representations of large integers by certain positive-definite ternary quadratic forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 53
EP  - 59
VL  - 76
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a1/
LA  - ru
ID  - ZNSL_1978_76_a1
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T Asymptotic behavior of the number of representations of large integers by certain positive-definite ternary quadratic forms
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 53-59
%V 76
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a1/
%G ru
%F ZNSL_1978_76_a1
E. P. Golubeva. Asymptotic behavior of the number of representations of large integers by certain positive-definite ternary quadratic forms. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 53-59. http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a1/