Asymptotic behavior of the number of representations of large integers by certain positive-definite ternary quadratic forms
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 53-59
Cet article a éte moissonné depuis la source Math-Net.Ru
Continuing the work in an earlier paper, the author uses an assumption concerning the location of zeros of Dirichlet $L$-series in order to derive an asymptotic formula for the number of representations of large integers by the ternary form $f(x,y,z)=x^2+2y^2+Dz^2$, where $D$ is of the form $x^2+2y^2$.
@article{ZNSL_1978_76_a1,
author = {E. P. Golubeva},
title = {Asymptotic behavior of the number of representations of large integers by certain positive-definite ternary quadratic forms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {53--59},
year = {1978},
volume = {76},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a1/}
}
TY - JOUR AU - E. P. Golubeva TI - Asymptotic behavior of the number of representations of large integers by certain positive-definite ternary quadratic forms JO - Zapiski Nauchnykh Seminarov POMI PY - 1978 SP - 53 EP - 59 VL - 76 UR - http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a1/ LA - ru ID - ZNSL_1978_76_a1 ER -
E. P. Golubeva. Asymptotic behavior of the number of representations of large integers by certain positive-definite ternary quadratic forms. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions, Tome 76 (1978), pp. 53-59. http://geodesic.mathdoc.fr/item/ZNSL_1978_76_a1/