The number of labeled topologies on nine points
Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 35-42

Voir la notice de l'article provenant de la source Math-Net.Ru

The number of all topologies which can be introduced on a fixed set of nine points is found. It is equal to 63 260 289 423. Of them 44 511 042 511 are topologies with the axiom of separability $\mathrm T_\mathrm o$. Bibl. 3 titles.
@article{ZNSL_1978_75_a4,
     author = {Z. I. Borevich and V. Venslav and \'E. Dobrovol'skii and V. I. Rodionov},
     title = {The number of labeled topologies on nine points},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {35--42},
     publisher = {mathdoc},
     volume = {75},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a4/}
}
TY  - JOUR
AU  - Z. I. Borevich
AU  - V. Venslav
AU  - É. Dobrovol'skii
AU  - V. I. Rodionov
TI  - The number of labeled topologies on nine points
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 35
EP  - 42
VL  - 75
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a4/
LA  - ru
ID  - ZNSL_1978_75_a4
ER  - 
%0 Journal Article
%A Z. I. Borevich
%A V. Venslav
%A É. Dobrovol'skii
%A V. I. Rodionov
%T The number of labeled topologies on nine points
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 35-42
%V 75
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a4/
%G ru
%F ZNSL_1978_75_a4
Z. I. Borevich; V. Venslav; É. Dobrovol'skii; V. I. Rodionov. The number of labeled topologies on nine points. Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 35-42. http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a4/