The number of labeled topologies on nine points
Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 35-42
Voir la notice de l'article provenant de la source Math-Net.Ru
The number of all topologies which can be introduced on a fixed set of nine points is found. It is equal to 63 260 289 423. Of them 44 511 042 511 are topologies with the axiom of separability $\mathrm T_\mathrm o$. Bibl. 3 titles.
@article{ZNSL_1978_75_a4,
author = {Z. I. Borevich and V. Venslav and \'E. Dobrovol'skii and V. I. Rodionov},
title = {The number of labeled topologies on nine points},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {35--42},
publisher = {mathdoc},
volume = {75},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a4/}
}
TY - JOUR AU - Z. I. Borevich AU - V. Venslav AU - É. Dobrovol'skii AU - V. I. Rodionov TI - The number of labeled topologies on nine points JO - Zapiski Nauchnykh Seminarov POMI PY - 1978 SP - 35 EP - 42 VL - 75 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a4/ LA - ru ID - ZNSL_1978_75_a4 ER -
Z. I. Borevich; V. Venslav; É. Dobrovol'skii; V. I. Rodionov. The number of labeled topologies on nine points. Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 35-42. http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a4/