Subgroups of the full linear group over a~semilocal ring
Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 32-34

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda$ be a semilocal ring (a factor ring with respect to the Jacobson–Artin radical) for which the residue field $C/m$ of its center $C$ with respect to each maximal ideal $m\subset C$ contains no fewer than seven elements. The structure of subgroups $H$ in the full linear group $\mathrm{GL}(n,\Lambda)$ containing the group of diagonal matrices is considered. The main theorem: for any subgroup $H$ there is a uniquely determined $D$-net of ideals $\sigma$ such that $G(\sigma)\le H\le N(\sigma)$, where $N(\sigma)$ is the normalizer of the $D$-net subgroup $G(\sigma)$. A transparent classification of subgroups $\mathrm{GL}(n,\Lambda)$ normalizable by diagonal matrices is thus obtained. Further, the factor group $N(\sigma)/G(\sigma)$ is studied. Bibl. 4 titles.
@article{ZNSL_1978_75_a3,
     author = {Z. I. Borevich and N. A. Vavilov},
     title = {Subgroups of the full linear group over a~semilocal ring},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {32--34},
     publisher = {mathdoc},
     volume = {75},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a3/}
}
TY  - JOUR
AU  - Z. I. Borevich
AU  - N. A. Vavilov
TI  - Subgroups of the full linear group over a~semilocal ring
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 32
EP  - 34
VL  - 75
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a3/
LA  - ru
ID  - ZNSL_1978_75_a3
ER  - 
%0 Journal Article
%A Z. I. Borevich
%A N. A. Vavilov
%T Subgroups of the full linear group over a~semilocal ring
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 32-34
%V 75
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a3/
%G ru
%F ZNSL_1978_75_a3
Z. I. Borevich; N. A. Vavilov. Subgroups of the full linear group over a~semilocal ring. Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 32-34. http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a3/