Center of the semigroup algebra of a finite inverse semigroup over the field of complex numbers
Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 154-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the semigroup algebra $A$ of a finite inverse semigroup $S$ over the field of complex numbers to an indempotent $e$ there is assigned the sum $\sigma(e)=e+\sum(-1)^ke_{i_1}\cdots e_{i_k}$, where $e_1,\dots,e_m$ are maximal preidempotents of the idempotent $e$, and the summation goes over all nonempty subsets $\{i_1,\dots,i_k\}$ of the set $\{1,\dots,m\}$. Then for any class $\mathscr K$ of conjugate group elements of the semigroup $S$ the element $K=\sum a\cdot\sigma(a^{-1}a)$ (the summation goes over all $a\in\mathscr K$) is a central element of the algebra $A$, and the set $\{K\}$ of all possible such elements is a basis for the center of the algebra $A$. Bibl. 2 titles.
@article{ZNSL_1978_75_a16,
     author = {A. V. Rukolaine},
     title = {Center of the semigroup algebra of a~finite inverse semigroup over the field of complex numbers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {154--158},
     year = {1978},
     volume = {75},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a16/}
}
TY  - JOUR
AU  - A. V. Rukolaine
TI  - Center of the semigroup algebra of a finite inverse semigroup over the field of complex numbers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 154
EP  - 158
VL  - 75
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a16/
LA  - ru
ID  - ZNSL_1978_75_a16
ER  - 
%0 Journal Article
%A A. V. Rukolaine
%T Center of the semigroup algebra of a finite inverse semigroup over the field of complex numbers
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 154-158
%V 75
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a16/
%G ru
%F ZNSL_1978_75_a16
A. V. Rukolaine. Center of the semigroup algebra of a finite inverse semigroup over the field of complex numbers. Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 154-158. http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a16/