Center of the semigroup algebra of a finite inverse semigroup over the field of complex numbers
Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 154-158
Cet article a éte moissonné depuis la source Math-Net.Ru
In the semigroup algebra $A$ of a finite inverse semigroup $S$ over the field of complex numbers to an indempotent $e$ there is assigned the sum $\sigma(e)=e+\sum(-1)^ke_{i_1}\cdots e_{i_k}$, where $e_1,\dots,e_m$ are maximal preidempotents of the idempotent $e$, and the summation goes over all nonempty subsets $\{i_1,\dots,i_k\}$ of the set $\{1,\dots,m\}$. Then for any class $\mathscr K$ of conjugate group elements of the semigroup $S$ the element $K=\sum a\cdot\sigma(a^{-1}a)$ (the summation goes over all $a\in\mathscr K$) is a central element of the algebra $A$, and the set $\{K\}$ of all possible such elements is a basis for the center of the algebra $A$. Bibl. 2 titles.
@article{ZNSL_1978_75_a16,
author = {A. V. Rukolaine},
title = {Center of the semigroup algebra of a~finite inverse semigroup over the field of complex numbers},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {154--158},
year = {1978},
volume = {75},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a16/}
}
A. V. Rukolaine. Center of the semigroup algebra of a finite inverse semigroup over the field of complex numbers. Zapiski Nauchnykh Seminarov POMI, Rings and linear groups, Tome 75 (1978), pp. 154-158. http://geodesic.mathdoc.fr/item/ZNSL_1978_75_a16/